
ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762
 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 7, Issue 5, May 2021

80

Predicting Automobile Trip Duration using

Machine Learning

Tanvi Baweja

 Dept. of Information Technology Engineering

Amity School of engineering and Technology, Guru Gobind Singh Indraprastha University

New Delhi, India

tanvibaweja@gmail.com

Abstract—Predicting automobile trip duration for future trips

is a problem as real time traffic data is not available. However,

an estimate can be predicted using the information available at

hand before the start of the trip. The objectives of this paper are

(a) To predict automobile trip duration using such factors like

starting location, destination, date and time using various

machine learning models and (b) To analyze and compare the

performance of these models. Six machine learning models (i)

Linear models- OLS, Ridge, Lasso and Elastic Net (ii) Random

Forest (iii) Deep Neural Network have been used to predict the

trip duration. Three performance metrics- R2 Score, MSE and

MAE have been used for comparison of these models. Deep

Neural Network gives the lowest MSE, followed by OLS model.

Keywords—Machine Learning, Regression, Random Forest,

Deep Neural Network, Trip Duration Prediction, Linear Models

I. INTRODUCTION

 One can easily check for the real time estimated time of

arrival for a trip we are about to take in the moment. The

real problem exists when we want an estimate of duration of

a trip we are planning to take in the future as no real time

traffic updates can be made available. An approach to this

problem could be to treat this problem as a regression

problem and to use machine learning to predict trip duration,

using trip information available to us before the beginning

of the trip. In 2015, a feature for predictive estimates of

future transit time was introduced in Google Maps API

which lets developers estimate the travel time by adding the

departure_time parameter [1]. The purpose of this paper is

similar- to predict travel time using starting location,

destination, date and time of the trip, and to compare the

performance of different machine learning models designed

for the same problem. Required and relevant features can be

extracted using these four variables which could be treated

as input to machine learning models. In [2], authors have

used Linear Regression with model selection and Random

Forest to work on a similar problem. In this paper, we

extend the study further and compare the performance of

(i)Linear models - OLS, Ridge, Lasso, Elastic Net, (ii)

Random Forest and (iii) Deep Neural Network (DNN) using

(i) R-Squared(R
2
) Score, (ii)Mean Squared Error (MSE) and

(iii) Mean Absolute Error (MAE). The input features and the

results of this paper are different from the work done by

authors in [2].
While distance is a major factor in determining the trip

duration; date and time can also play an important role in

determining the trip duration. Information such as month,

day of the week and time of the day can be extracted using

date and time. Commuters might experience traffic

congestion during peak hours. Traffic flow and road

congestion might also vary during months of extreme

weather conditions. Markou [3] analysed demand

fluctuations in traffic networks and disruptive events

scenarios like extreme weather conditions, public holidays,

religious festivities and parades were correlated to these

fluctuations. Information about distance, month, day of the

week and time of the day can be useful to predict the trip

duration in advance.
All models have been implemented using scikit-learn 0.24.0

[4] and Keras with their default parameters unless stated

otherwise.

II. DATA

 For this study, the database is based on 2016 NYC

Yellow Cab trip record data provided by Kaggle for the

Playground Prediction Challenge - New York City Taxi Trip

Duration, which contains trip records from the month of

January to September. The original dataset contains

longitude and latitude of pickup and dropoff locations, time

and date of pickup and dropoff and other variables (which

are not relevant to this study). Data processing was done to

extract separate features like pickup month, pickup day,

pickup timezone, dropoff month, dropoff day, dropoff

timezone. The timezones were defined as morning, midday,

evening and late night. Furthermore, trip duration was

calculated as the difference between pickup and dropoff

time, and trip distance was calculated using the pickup and

dropoff longitudes and latitudes. Corelations among these

features were studied and none of these features shared a

linear corelation with the dependent variable i.e., trip

duration. To find a linear corelation between trip distance

and trip duration, these two features were replaced by their

natural logs (see Fig. 1 and Fig. 2). Finally, this categorical

data was transformed through one-hot encoding. To build

the models, anomalies were removed. The final datase

contains 1450690 rows and 37 columns (36 independent

features and 1 dependent feature – natural log of trip

duration). This dataset was split into training and testing sets

in the ratio 8:2.

Fig. 1. Plot between trip duration and trip distance

Fig. 2. Plot between natural log of trip duration and natural log of trip
distance

III. METHADOLOGY AND MODELS

A. Linear Models

Since one of the independent features- natural log of trip

duration shares a linear relationship with the dependent

feature- natural log of trip duration, linear

different optimization techniques- Ordinary Least Squares

(OLS), Ridge, Lasso and Elastic Net. Mathematically, linear

regression is represented as

 ����, �� � �	
 ����
 ⋯
 �

where ����, �� is the predicted value and �	

coefficients.

 Regularization improves a model’s perf

preventing overfitting. In some cases, even if the model

does not suffer from overfitting, better performance can still

be achieved with regularization. The method of Ordinary

Least Squares (OLS) does not use any regularization

check if regularization helps in achieving better accuracy

Ridge, Lasso and Elastic Net have also been implemented

along with OLS. At first, models were

independent feature – natural log of trip distance.

feeding other independent features, even though

The final dataset

(36 independent

natural log of trip

dataset was split into training and testing sets

2. Plot between natural log of trip duration and natural log of trip

S

natural log of trip

duration shares a linear relationship with the dependent

trip duration, linear models with

Ordinary Least Squares

(OLS), Ridge, Lasso and Elastic Net. Mathematically, linear

� (1)

	, … , � are the

egularization improves a model’s performance by

even if the model

better performance can still

The method of Ordinary

regularization. To

if regularization helps in achieving better accuracy,

been implemented

models were fed only one

natural log of trip distance. On

even though not

significant, some improvement in the

was observed.

1) Ordinary Least Squares: OLS aims at minimizing

the sum of squared residuals (SSR). Mathematically, the

problem that is being solved is:

 ����||�� � �|

In [5], the author mentions that if the input features and the

output feature share a true linear relationship, a low bias will

be shown by OLS. If the number of observations

case, approximately 1160000) is much greater than

number of independent variables p

squares estimates tend to also have low variance, and hence

will perform well on test observations.

OLS has been implemented in python using class

sklearn.linear_model.LinearRegression.

2) Ridge Regression: Ridge regression

regularization of coefficients. A penalized SSR is reduced

by the ridge coefficients. The penalty term added to SSR is

equivalent to the square of magnitude of coefficients:

 ���
 �||�||

This has been implemented in python using class
sklearn.linear_model.Ridge.

3) Lasso: Lasso uses L1-norm regularization of

coefficients. The penalty term added is equivalent to the

absolute magnitude of coefficients. The objective function

to minimize is :

 ����
�

������ !�
||�� � �|

Lasso has been implemented in python using the class
sklearn.linear_model.Lasso (alpha = 0.1).

4) Elastic Net: Both L1 and L2-

the coefficients is used by the Elastic Net regression. It

works by minimizing the following objective function:

 ����
�

������ !�
||�� � �||�

�
 �"||�|

The convex combination of L1 and L2 is controlled using

the l1_ratio parameter. If l1_ratio=1.0

Lasso (no L2 penalty). Table 1 shows

for different l1_ratio for Elastic Net model.

gives highest R
2
 score and lowest MSE and MAE.

Net model has been implemented in python using

sklearn.linear_model.ElasticNet(alpha=0.1

TABLE I. R2
 SCORE, MSE, MAE FOR

FOR ELASTIC NET MODEL

l1_ratio R2 score MSE

0.1 0.638 0.213

0.3 0.623 0.222

some improvement in the model performance

was observed.

OLS aims at minimizing

squared residuals (SSR). Mathematically, the

||�
� (2)

In [5], the author mentions that if the input features and the

output feature share a true linear relationship, a low bias will

number of observations, n (in this

much greater than the

p (36), then the least

squares estimates tend to also have low variance, and hence

will perform well on test observations.
n implemented in python using class

sklearn.linear_model.LinearRegression.

regression uses L2-norm

regularization of coefficients. A penalized SSR is reduced

by the ridge coefficients. The penalty term added to SSR is

equivalent to the square of magnitude of coefficients:

||�
� (3)

in python using class

norm regularization of

The penalty term added is equivalent to the

The objective function

||�
�
 �||�||� (4)

Lasso has been implemented in python using the class
sklearn.linear_model.Lasso (alpha = 0.1).

-norm regularization of

the coefficients is used by the Elastic Net regression. It

following objective function:

||�

#��$%�

�
||�||�

� (5)

1 and L2 is controlled using

=1.0, Elastic Net acts as

Table 1 shows R2 score, MSE, MAE

for Elastic Net model. l1_ratio of 0.1

score and lowest MSE and MAE. Elastic

Net model has been implemented in python using

(alpha=0.1).

FOR DIFFERENT L1_RATIO

MODEL

MSE MAE

0.347

0.357

0.5 0.619 0.224 0.359

0.7 0.616 0.226 0.361

1.0 0.612 0.226 0.362

B. Random Forest

 Random Forest is a tree based ensemble model and has a
nonlinear nature. Authors in [7] mention that different types
of predictor variables can be handled by tree based ensemble
methods. They prove to be good candidates when it comes to
solving travel time prediction problems. In [2], Random
Forest is used to account for nonlinear effect of location, and
it outperforms all other models. However, in our study, effect
of location is not accounted for and OLS outperforms
Random Forest. This model has been implemented in
python using the class
sklearn.ensemble.RandomForestRegressor.

C. Deep Neural Network

Artificial Neural Networks (ANN) are made up layers and

nodes to mimic the network of neurons in the brain. ANNs

are known for their ability to learn complex functions. If an

ANN contains multiple hidden layers, it is termed as a Deep

Neural Network (DNN). If the right hyperparameters are

chosen, a DNN can learn both linear and nonlinear

relationships between input and output. After numerous

tests, the following combination of hyperparameters was

selected for the deep learning model:

• No. of hidden layers: 2

• No. of nodes in hidden layers: 36 each

• Activation function: relu (hidden layers) & linear (final

layer)

• Optimizer: Adam

• Learning Rate: 0.001

• Loss function: mean squared error

• Epochs: 100

• Batch size: 64

DNN has been implemented using tf.keras.Sequential class.

IV. RESULTS

TABLE II. R2
 SCORE, MSE, MAE FOR DIFFERENT MODELS

Model R2 score MSE MAE

OLS 0.665 0.198 0.330

Ridge 0.645 0.207 0.340

Lasso 0.612 0.226 0.362

Elastic Net(l1_ratio=0.1) 0.638 0.213 0.347

Random Forest 0.611 0.229 0.360

Deep Neural Network 0.672 0.182 0.317

TABLE III. ACTUAL Y VS PREDICTED VALUES FOR

DIFFERENT MODELS

Actual y 5.533 7.579 8.358

OLS Prediction 5.958 7.658 8.118

Ridge Prediction 5.963 7.670 7.975

Lasso Prediction 6.130 7.424 7.614

Elastic Net Prediction 6.058 7.541 7.764

Random Forest Prediction 6.033 7.431 7.702

Deep Neural Network 5.925 7.559 7.995

 Table 2 contains values of R
2
 score, MSE, MAE for

different regression models implemented in this study.

Among OLS, Ridge, Lasso and Elastic Net regression, OLS

model performs best with highest R
2
 score and lowest MSE

and MAE. As discussed earlier, this is because the number

of observations in the training set is much greater than the

number of independent variables. Since a large number of

training examples have been used, chances of overfitting

were lower and regularization did not improve model

performance. Ridge model, which uses L2 norm

regularization, outperforms Lasso and Elastic Net.

 In contrast to the results in [2], where nonlinearities in

traffic and location effect is modeled by Random Forest, it

did not outperform OLS model. In our study, although

independent variables with nonlinear correlations have

significance in improving model performance, the most

significant independent variable – natural log of trip

duration has high linear correlation with the dependent

variable.

 DNN outperforms all other models in this study. The

model’s performance on the testing set is given in table II.

The validation set contained at least 500 examples. Model’s

performance was evaluated after each epoch using this

validation set and R
2
 score of 0.681, MSE of 0.175 and

MAE of 0.309 was recorded after 100 epochs.

 A comparison between actual value of natural log of trip

duration (actual y) and predicted values by different

regression models is given in Table 3. Comparing the

prediction made by DNN with Google Maps with real time

traffic updates, DNN predicts a trip duration of 26.89

minutes for a trip taken from Statue of Liberty to Empire

State Building on 13 April 2021 at 18 hours 15 minutes,

while Google maps show an ETA of 21, 23 and 25 minutes

depending upon the route taken.

V. CONCLUSION AND FUTURE WORK

 Using features like trip distance, month, day of the week

and time have been successful at predicting trip distance

using regression models. Among all the six models, DNN

gives the lowest MSE, followed by the OLS model.
 In this study, trip distance is being calculated as the

distance between two GPS coordinates along the curvature

of the earth. Accuracy can be improved if trip distance is

calculated according to the preferred route which can be

chosen on the basis of other input features.

REFERENCES

[1] Google Maps Platform: Predicting the Future with Google Maps
APIs, https://maps-apis.googleblog.com/2015/11/predicting-future-
with-google-maps-apis.html. Last accessed 10 Jan 2021

[2] Antoniades C, Fadavi D, Amon AF. Fare and duration prediction: A
study of New York city taxi rides. Tech. Rep(2016)

[3] Markou, Ioulia, Filipe Rodrigues, and Francisco C. Pereira. "Use of
taxi-trip data in analysis of demand patterns for detection and
explanation of anomalies," Transportation Research Record 2643,
pp.129-138,2017

[4] Pedregosa et al,”Scikit-learn: Machine Learning in Python,” JMLR
12, pp. 2825-2830 ,2011

[5] G. James et al,”An introduction to statistical learning: with
applications in R,” Springer Texts in Statistics,Springer
Science+Business Media,New York (2013) DOI 10.1007/978-1-4614-
7138-7

[6] Scikit-learn 1.1Linear Models,https://scikit-
learn.org/stable/modules/linear_model.html#linear-models. Last
accessed 10 Jan 2021

[7] Zhang, Yanru, and Ali H,” A gradient boosting method to improve
travel time prediction,” Transportation Research Part C: Emerging
Technologies 58, pp. 308-324(2015)

83

