
ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   3 

 

 

  AN EFFFICIENT VLSI ARCHITECTURE OF FIXED-POINT LMS ADAPTIVE 

FILTER FOR DSP APPLICATION 

C.Sreevidya
 1

, V.Tamizharasan
 2

 

Student M.E. , Applied Electronics
 1

 

Assistant Professor, ECE SIG(1)
2
 

Erode sengunthar engineering college 

 
 

 

ABSTRACT 

In this paper we propose adaptive filter 

implementing multiplication cell  with efficient 

adder’s tree to minimize the critical path during the 

inner product computation and also minimizing the 

area without increasing the adaptation delays. And 

also comparing the existing system with the 

proposed  system which gives better performance 

characteristics. 

INTRODUCTION 

The filter is an important component in the 

communication world. It can eliminate unwanted 

signals from useful information.However, to obtain 

an optimal filtering performance; it requires ‘a 

priori’ knowledge of both the signal and its 

embedded noise statistical information. The 

classical approach to this problem is to design 

frequency selective filters, which approximate the 

frequency band of the signal of interest and reject 

those signals outside this frequency band. The 

removal of unwanted signals through the use of 

optimization theory is becoming popular, 

particularly in the area of adaptive filtering. These 

filters minimize the mean square of the error  

 

signal, which is the difference between the 

reference signal and the estimated filter output, by 

removing unwanted signals according to statistical 

parameters. In adaptive filters concepts,the most 

commonly used concept is least mean square 

(LMS) adaptive filter due to its simple and 

satisfactory convergence performance. The LMS 

adaptive filter has a long critical path in its direct 

form because of its inner product computations for 

obtaining the filter flawless output. This path have 

to be reduced by implementing a technique called 

pipelined structure whenever it exceeds the given 

sample period. The recursive behaviour of our 

conventional LMS algorithm does not support the 

use of pipelined concept; hence it is modified to a 

form called delayed least mean square algorithm 

adaptive filter. 

In order by implementing the DLMS algorithm in 

the system architecture to increase the maximum 

usable frequency results in adaptation delays 

approximately N cycles for filter length N, which 

increases with higher order accordingly.The 

adaptation delay is inversely proportional to the 

convergence performance since increase in 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   4 

 

 

adaptation delay degrades convergence 

performance. Many proposed some modified 

architecture to overcome the drawbacks like using 

a transpose-form LMS adaptive filter, using large 

processing elements, fine grained pipelined design 

. A 2-bit multiplication cell is used with efficient 

adder’s tree to minimize the critical path during the 

inner product computation and also minimizing the 

area without increasing the adaptation delays. 

SYSTEM DESCRIPTION  

1. EXISISTING SYSTEM 

The DLMS adaptive algorithm is introduced to 

achieve lower adaptation-delay. It can be 

implemented using pipelining. But it can be used 

only for large order adaptive filters. Typical DSP 

Programs with highly real-time, design hardware 

and or software to meet the application speed 

constraint. It also deals with 3-Dimensional 

Optimization (Area, Speed, and Power) to achieve 

required speed, area power trade-offs and power 

consumption. An efficient scheme is presented for 

implementing the LMS-based transversal adaptive 

filter in block floating-point (BFP) format, which 

permits processing of data over a wide dynamic 

range, at temporal and hardware complexities 

significantly less than that of a floating-point 

processor. 

1.1. REVIEW OF DLMS ALGORITHM 

For every input sample, the LMS algorithm 

calculates the filter output and finds the difference 

between the computed output and the desired 

response. Using this difference the filter weights 

are updated in every cycle. During the n-th 

iteration, LMS algorithm updates the weights as 

follows:   

  Wn+1 = Wn + µ · e(n) · x(n)                       (1)    

 Where,   µ is the convergence-factor.  

e(n) = d(n) − y(n) y(n)= wTn· x(n)          (2)  

 Here,  x(n) is the input vector,d(n) is the desired 

response, and y(n) is the filter output of the nth 

iteration w(n) is the weight vector of an Nth order 

LMS adaptive filter at the nth iteration, 

respectively, given by,  

x(n) = [x(n), x(n − 1), …., x(n − N + 1)]T                    

wn = [wn(0), wn(1),….., wn(N − 1)]T e(n)  

denotes the error computed in the nth iteration 

which is used to update the weights.    

The DLMS algorithm uses the delayed error 

e(n−m), (i.e.) the error corresponding to (n−m) 

-iteration for updating the current weight. The 

weight-update equation of DLMS algorithm is 

given by,  

Wn+1 =Wn + µ · e(n − m) · x(n − m)                                         

(3) 

where, 

The structure of conventional delayed LMS 

adaptive filter is shown in Fig1. It can be seen that 

the adaptation-delay ‘m’ is the number of cycles 

required for the error corresponding to any given 

sampling instant to become available to the weight 

adaptation circuit.  



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   5 

 

 

 

Fig. 1.1.Structure of conventional delayed LMS 

adaptive filter 

 

The block diagram of the DLMS adaptive filter is 

shown Fig. 1. , where the adaptation delay of m 

cycles amounts to the delay introduced by the 

whole of adaptive filter structure consisting of 

finite impulse response (FIR) filtering and the 

weight-update process. 

 It is shown in  that the adaptation delay of 

conventional LMS can be decomposed into two 

parts: one part is the delay introduced by the 

pipeline stages in FIR filtering, and the other part is 

due to the delay involved in pipelining the weight 

update process. Based on such a decomposition of 

delay, the DLMS adaptivefilter canbe implemented 

by a structure shown Fig. 2. . Assuming that the 

latency of computation of error is n1 cycles, the 

error computed by the structure at the nth cycle is 

en−n1, which is used with the input samples 

delayed by n1 cycles to generate the 

weight-increment term. 

 

Fig. 1.2.Structure of modified delayed LMS 

adaptive filter  

 

The weight update equation of the modified DLMS 

algorithm is given by 

wn+1 =wn +µ·en−n1 ·xn−n1 (3a)  

 

where 

                       en−n1 =dn−n1 −yn−n1                                                                    

(3b)  

yn =wT n−n2 ·xn. (3c) 

 We notice that, during the weight update, the error 

with n1 delays is used, while the filtering unit uses 

the weights delayed by n2 cycles. The modified 

DLMS algorithm decouples computations of 

theerror-computationblockandthe weight-update 

block and allows us to perform optimal pipelining 

by feedforward cut-set retiming of both these 

sections separately to minimize the number of 

pipeline stages and adaptation delay. The adaptive 

filters with different n1 and n2 are simulated for a 

system identificationproblem.The 10-tap 

band-passfilter with impulse response  

 

 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   6 

 

 

hn = sin(wH(n−4.5))/ π(n−4.5) − sin(wL(n−4.5))/ 

π(n−4.5) 

for n =0,1,2,...,9,  

otherwisehn =0 (4) 

is used as the unknown system . wH and wL 

represent the high and low cut-off frequencies of 

the pass band, and are set to wH = 0.7π and wL = 

0.3π, respectively. The step size µ is set to 0.4. A 

16-tap adaptive filter identifies the unknown 

system with Gaussian random input xn of zero 

mean and unit variance. In all cases, outputs of 

known system are of unity power, and 

contaminated with white Gaussian noise of −70 dB 

strength. Fig. 3 shows the learning curve of MSE of 

the error signal en by averaging 20 runs for the 

conventional LMS adaptive filter (n1 =0,n2 =0) 

and DLMS adaptive filters with (n1 = 5,n2 = 1) and 

(n1 = 7,n2 = 2). It can be seen that, as the total 

number of delays increases, the convergence is 

slowed down, while the steady-state MSE remains 

almost the same in all cases. In this example, the 

MSE difference between the cases (n1 = 5,n2 = 1) 

and (n1 = 7,n2 = 2) after 2000 iterations is less than 

1 dB, on average. 

1.2. DLMS ADAPTIVE FILTER 

ARCHITECTURE 

            There are two main computing blocks in 

the adaptive filter architecture:  

1) The error-computation block  

2) The weight-update block.  

In this Section, we discuss the design strategy of 

the proposed structure to minimize the adaptation 

delay in the error-computation block, followed by 

the weight-update block. 

 1.2.1.  Pipelined Structure of the 

Error-Computation Block 

 

 

Fig. 1.3.  Structure of error-computation block . 

The proposed structure for error-computation 

block unit of an N-tap DLMS adaptive filter is 

shown , It consists of N number of 2-b partial 

product generators (PPG) corresponding to N 

multipliers and a cluster of L/2 binary adder trees, 

followed by a single shift–add tree. Each sub block 

is described in detail. 

1.2.1.1. Structure of PPG: 

 The structure of each PPG is shown Fig. 4. , It 

consists of L/2 number of 2-to-3 decoders and the 

same number of AND/OR cells(AOC).1 Each of 

the 2-to-3 decoders takes a 2-b digit (u1u0) as input 

and produces three outputs b0 =u0·¯  u1, b1 =¯  

u0·u1,and b2 =u0·u1, such that b0 =1 for(u1u0)=1, 

b1 =1 for( u1u0) = 2, and b2 = 1 for(u1u0) = 3. The 

decoder output b0,b1 and b2 along with w,2w, and 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   7 

 

 

3 w are fed to an AOC, where w,2 w, and 3 w are in 

2’s complement representation and sign-extended 

to have (W +2) bits each. To take care of the sign of 

the input samples while computing the partial 

productcorrespondingto the most significant digit 

(MSD), i.e., (uL−1uL−2) of the input sample, the 

AOC (L/2−1) is fed with w, −2w, and−w as input 

since (uL−1uL−2) can have four possible values 0, 

1, −2, and 

−1.

 

Fig.1.4.Structure of PPG. 

1.2.1.2. Structure of AOCs:  

Thestructureand functionof an AOC are depicted . 

Each AOC consists of three AND cells and two OR 

cells. The structure and function of AND cells and 

OR cells are depicted by, respectively. Each AND 

cell takes an n-bit input D and a single bit input b, 

and consists of n AND gates. It distributes all the n 

bits of input D to its n AND gates as one of the 

inputs. The other inputs of all the n AND gates are 

fed with the single-bit input b. As shown in , each 

OR cell similarly takes a pair of n-bit input words 

and has n OR gates. A pair of bits in the same bit 

position in B and D is fed to the sameOR gate. The 

output of an AOC is w,2 w, and 3 w corresponding 

to the decimal values 1, 2, and 3 of the 2-b input 

(u1u0), respectively. The decoder along with the 

AOC performs a multiplication of input operand w 

with a 2-b digit (u1u0), such that the PPG performs 

L/2 parallel multiplications of input word w with a 

2-b digit to produce L/2 partial products of the 

product word wu.  

 

Fig.1.5. Structure and function of AND/OR 

Cells. 

1.3.STRUCTURE OF ADDER TREE 

Conventionally, we should have performed the 

shift-add operation on the partial products of each 

PPG separately to obtain the product value and 

then added all the N product values to compute the 

desired inner product. However,the 

shift-addoperationto obtain the product value 

increases the word length, and consequently 

increases the adder size of N −1 additions of the 

product values.  

To avoid such increase in word size of the adders, 

we add all the N partial products of the same place 

value from all the N PPGs by one adder tree. All 

the L/2 partial products generated by each of the N 

PPGs are thus added by (L/2) binary adder trees. 

The outputs of the L/2 adder trees are then added by 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   8 

 

 

a shift-add tree according to their place values. 

Each of the binary adder trees require log2 N stages 

of adders to add N partial product, and the 

shift–add tree requires log2 L −1 stages of adders to 

add L/2 output of L/2 binary adder trees.2 The 

addition scheme for the error-computation block 

for a four-tap filter and input word size L =8 is 

shown . For N =4 andL =8, the adder network 

requires four binary adder trees of two stages each 

and a two-stage shift–add tree. In this figure, we 

have shown all possible locations of pipeline 

latches by dashed lines, to reduce the critical path 

to one addition time.  

If we introduce pipeline latches after every 

addition,it would require L(N −1)/2+L/2−1 latches 

in log2 N +log2 L−1 stages, which would lead to a 

high adaptation delay and introduce a large 

overhead of area and power consumption for large 

values of N and L. On the other hand, some of 

those pipeline latches are redundant in the sense 

that they are not required to maintain a critical path 

of one addition time. 

 The final adder in the shift–add tree contributes to 

the maximum delay to the critical path. Based on 

that observation, we have identified the pipeline 

latches that do not contribute significantly to the 

critical path and could exclude those without any 

noticeable increase of the critical path. The 

location of pipeline latches for filter lengths N =8, 

16, and 32 and for input size L =8 are shown in 

Table I. The pipelining is performed by a 

feedforward cut-set retiming of the 

error-computation block. 

 

                Fig.1.6. Adder structure of the 

filtering (N=4 & L=8) 

1.4.ADAPTATION DELAY 

                              The adaptation delay is 

decomposed into n1 and n2 shown in Fig. 2.. The 

error-computation block generates the delayed 

error by n1−1 cycles as shown , which is fed to the 

weight-update block shown in Fig. 8 after scaling 

by µ; then the input is delayed by 1 cycle before the 

PPG to make the total delay introduced by FIR 

filtering be n1. In Fig. 8, the weight-update block 

generates wn−1−n2, and the weights are delayed by 

n2+1 cycles. However, it should be noted that the 

delay by 1 cycle is due to the latch before the PPG, 

which is included in the delay of the 

error-computation block, i.e., n1. Therefore, the 

delay generated in the weight-update block 

becomes n2. If the locations of pipeline latches are 

decided as in Table I, n1 becomes 5, where three 

latches are in the error-computation block, one 

latch is after the subtraction in  and the other latch 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   9 

 

 

is before PPG . Also, n2 isset to 1 from a latch in 

the shift-add tree in the weight-update block. 

1.5.FIXED POINT IMPLEMENTATION 

OPTIMIZATION SIMULATION ANALYSIS 

In this section, we discuss the fixed-point 

implementation and optimization of the proposed 

DLMS adaptive filter. A bit level pruning of the 

adder tree is also proposed to reduce the 

hardwarecomplexitywithout 

noticeabledegradationofsteadystate MSE. 

1.5.1.Fixed-Point Design Considerations  

For fixed-point implementation, the choice of word 

lengths and radix points for input samples, weights, 

and internal signals need to be decided. shows the 

fixed-point representation of a binary number. Let 

(X, Xi) be a fixed-point representation of a binary 

number where X is the word length and Xi is the 

integer length. The word length and location of 

radix point of xn and wn need to be predetermined 

by the hardware designer taking the design 

constraints, such as desired accuracy and hardware 

complexity, into consideration. Assuming (L, Li) 

and (W ,Wi), respectively, as the representations of 

input signals and filter weights, all other signals can 

be decided as shown . 

 

 

 

Fig. 1.8. Fixed-point representation of binary 

number 

 

The signal pij, which is the output of PPG block, 

has at most three times the value of input 

coefficients. Thus, we can add two more bits to the 

word length and to the integer length of the 

coefficients to avoid overflow. The output of each 

stage in the adder tree  is one bit more than the size 

of input signals, so that the fixed-point 

representation of the output of the adder tree with 

log2 N stages becomes (W+ log2 N +2,Wi +log2 N 

+2). Accordingly, the output of the shift–add tree 

would be of the form (W+L+log2 N,Wi+Li+ log2 

N), assuming that no truncation of any least 

significant bits (LSB) is performed in the adder tree 

or the shift–add tree. 

 

 

 

Table 1.9 : Fixed –point representation of 

signals. 

 

 However, the number of bits of the output of the 

shift–add tree is designed to have W bits. The most 

significant W bits need to be retained out of (W 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   10 

 

 

+L+log2 N) bits, which results in the fixed-point 

representation (W ,Wi +Li +log2 N) for y, as 

shown. Let the representation of the desired signal 

d be the same way, even though its quantization is 

usually given as the input. For this purpose, the 

specific scaling/sign extension and truncation/zero 

padding are required. Since the LMS algorithm 

performs learning so that y has the same sign as d, 

the error signal e can also be set to have the same 

representation as y without overflow after the 

subtraction. 

 

 It is shown that the convergence of an N-tap 

DLMS adaptive filter with n1 adaptation delay will 

be ensured if 

                                             0 <µ <2/ (σ2 x (N 

−2)+2n1 −2)σ2 x                           (5)                          

Where                          σ2 x is the average power of 

input samples.  

Furthermore, if the value of µ is defined as (power 

of 2) 2−n                                           

where                                     n ≤ Wi+Li+log2 N 

the multiplication with µ is equivalent to the 

change of location of the radix point. Since the 

multiplication with µ does not need any arithmetic 

operation, it does not introduce any truncation 

error. If we need to use a smaller step size, i.e., n 

>Wi+Li+log2 N, some of the LSBs of en need to be 

truncated. If we assume that n = Li +log2 N, i.e.= 

2−(Li+log2 N), as in, the representation of µen 

should be (W,Wi) without any truncation. The 

weight increment term s (shown in Fig. 8), which is 

equivalent to µ* en* xn, is required to have 

fixed-point representation (W+L,Wi +Li). 

However, only Wi MSBs in the computation of the 

shift–add tree of the weight-update circuit are to be 

retained, while the rest of the more significant bits 

of MSBs need to be discarded.  

This is in accordance with the assumptions that, as 

the weights convergetoward the optimal value, the 

weight increment terms become smaller, and the 

MSB end of error term contains more number of 

zeros. Also, in our design, L − Li LSBs of weight 

increment terms are truncated so that the terms 

have the same fixed-point representation as the 

weight values. We also assume that no overflow 

occurs during the addition for the weight update. 

Otherwise, the word length of the weights should 

be increased at every iteration, which is not 

desirable. The assumption is valid since the weight 

increment terms are small when the weights are 

converged. Also when overflowoccursduringthe 

trainingperiod,the weight updating is not 

appropriate and will lead to additional iterations to 

reach convergence. Accordingly, the updated 

weight can be computed in truncated form (W,Wi) 

and fed into the error computation block. 

 

 

1.5.3. Steady-State Error Estimation 

 

In this section, the MSE of output of the proposed 

DLMS adaptive filter due to the fixed-point 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   11 

 

 

quantization is analysed. Based on the models 

introduced, the MSE of output in the steady state is 

derived in terms of parameters listed . 

 

 

Table 3.2 : Steady-state MSE 

 Let us denote the primed symbols as the truncated 

quantities due to the fixed-point representation, so 

that the input and the desired signals can be written 

as 

xꞋn =xn  + αn(6) 

dꞋn =dn+  βn(7)  

 

where αn and βn are input quantization noise vector 

and quantization noise of desired signal, 

respectively. The weight vector can be written as  

 

wꞋn =wn +ρn(8) 

 

whereρn is the error vector of current weights due 

to the finite precision. The output signal yꞋn and 

weight-update equation can accordingly be 

modified, respectively, to the forms  

 

yꞋn=wꞋ
T

nxꞋn +ηn(9) 

 wꞋn+1 =wn +µeꞋnxꞋ n +γn(10)  

 

whereηn and γn are the errors due to the truncation 

of output from the shift–add tree in the 

error-computation block and weight-update block, 

respectively. The steady-state MSE in the 

fixed-point representation can be expressed as  

 

E|dn −yꞋn|
2 

 = E|en|
2
 + E|α

T
n wn|

2
 +E|ηn|

2
 +E|ρ

T
n xn|

2
 

(11)  

 

where E|·|is the operator for mathematical 

expectation, and the terms en, α
T

nwn, ηn, andρ
T

nxn 

are assumed to be uncorrelated. The first term  

 

E|en|
2
,where en = dn – yn , 

 

is the excess MSE from infinite precision 

computation, whereas the other three terms are due 

to finite-precision arithmetic. 

The second term can be calculated as 

                              E|α
T

n wn|
2
 =|w

*
n|

2
(m

2
αn +σ

2
αn) 

(12)  

where w
*
n is the optimal Wiener vector, and m

2
αn 

andσ
2
αn are defined as the mean and variance of αn 

when xn is truncated to the fixed-point type of (L, 

Li), as listed. αn can be modelled as a uniform 

distribution with following mean and variance:  

                  m
2
αn=2−(L−Li)/2 (13a)  

                 σ
2
αn=2−2(L−Li)/12. (13b)  

For the calculation of the third term E|ηn|2 in (11), 

we have used the fact that the output from 

shift–add tree in the error computation block is of 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   12 

 

 

the type (W,Wi +Li +log2 N) after the final 

truncation. Therefore 

                 E|ηn|
2
 =m

2
Ꞌn+σ

2
Ꞌn(14)  

where 

          m
2
Ꞌn =2

-(W-(W
i
+ L

i
+log

2
N))/2

(15a)  

          σ
2
Ꞌn=2

-2(W-(W
i
+L

i
+log

2
N))/12

. (15b)                                                                  

 

The last term E|ρ
T

n xn|
2
 in (11) can be obtained by 

using the derivation    proposed in  as 

 

E|ρ
T

n xn|
2
 = m

2
γn ((∑i ∑k (Rki

-1)
 )/µ

2
 ) + (N(σγn

2
 

–m
2
γn )/2µ)                            (16)  

whereRki represents the (k,i)th entry of the matrix 

E(xnxT n ). For the weight update in (10), the first 

operation is to multiply e n with µ, which is 

equivalent to moving only the location of the radix 

point and, therefore, does not introduce any 

truncation error. The truncation after multiplication 

of µe n with xn is only required to be considered in 

order to evaluate γn.  

Then, we have  

                 m
2
γn=2

-(W-W
i
)/2

 (17a)                                                                                    

                σγn
2
=2

-2(W-W
i
)/12

     (17b)                                                                              

 For a large µ, the truncation error ηn from the 

errorcomputation block becomes the dominant 

error source, and (11) can be approximated as 

E|ηn|2. The MSE values are estimated from 

analytical expressions as well as from the 

simulation results by averaging over 50 

experiments. It  shows that the steady-state MSE 

computed from analytical expression matches with 

that of simulation of the proposed architecture for 

different values of N and µ. 

2.PROPOSED SYSTEM 

2.1. ADDER OPTIMIZATION 

2.1.1 MEMORY ELEMENT BASED FULL 

ADDER 

The memory element based full adder is a basic full 

adder which is combined witha flip flop to utilize 

the adder unit at different clock cycles in 

time-serialized ripple-carry manner and the 

number of clock cycles that it takes is equal to the 

number of 

bits.  

                                   fig 2.1 memory element 

based full adder 

2.1.2 MULTIPLIXER  BASED FULL ADDER 

2.1.3 NAND BASED FULL ADDER 

Addition is one of the most commonly used 

arithmetic operations. And its operation leads to 

the application in digital circuits, like the 

adder/summer. The full adder/summer performsthe 

0 addition of numbers. And its component is very 

essential especially in the arithmetic logic 

unit(s),digital signal processing, and in 

micro-processors. This circuit is my project for my 

course and I want  it to share with you. I am tasked 

to design a 4-bit full adder (FA) using only 

two-input NAND gates.  

                In this paper, a schematic diagram and an 

IC layout of a 4-bit full adder were made and 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   13 

 

 

simulated in order to compare the acquired output 

waveform, both from the schematic simulation and 

IC layout  aiming to grasp the concept behind 

lay-outing limiting/lessening any parasitic effect 

and having more compact circuit. 

                The binary adder circuit is an important 

building block of digital arithmetic circuits. Hence 

it becomes one of the most critical components of a 

processor, as it is used in the arithmetic logic 

unit(ALU), in the floating-point unit, and for 

address generation in case of cache or memory 

access. The 4-bit full adder’s performance would 

affect the system as a whole since more transistors 

will be used which will add more time delay. 

FA is a combinational circuit that forms the 

arithmetic sum of 3 bits. It consists of 3 inputs and 

2 outputs. The design of a binary adder begins by 

considering the process of addition in base 2.  

For example 

                     1    1 

                    1   0   1   1      =       11 

              +    0   1   1   0      =         6 

                 1   0   0   0   1      =      17 

 
           Full-adder Truth Table 

 

 

 

 

2.1.4 BEC ORIENTED ADDER  

Basic architecture of conventional adders clears 

that clearly there is a chancethat we can minimize 

the requirement of area and power consumption of 

the conventional CSA. For this purpose here used 

Binary to Excess-1 Converter thateffectively 

replaces the ripple carry adder with carry input 

Cin=1 and for improving the working operations 

we have not used multiplexer. We can clearly 

understand that from the block diagram of 

proposed structure which is of the order of 16-bit is 

divided into five blocks of RCA and BEC with 

different order of bit size.  

                The first group in this structure i.e. group 

1 contains only single RCAblock of 2- bit size, 

which gives there output sum and carry out. One is 

RCAblock and another is BEC block is used from 

the next coming groups that means it consist 

combination of 2 blocks. 

                In the designed circuit therefore there are 

two outputs one comes from the RCA block and 

other output from the BEC Sout and Cout is chosen 

from the upper RCA block if Cin=0 and if Cin=1 

then the output is chosen from BEC block. 

                   Final output is selected without the 

help of multiplexer. Using this concept and with 

the help of Xilinx calling function command we 

can design higher order bit like 32-bit and 64-bit 

adder. 

 

 

 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   14 

 

 

2.2. MULTIPLIER ARCHITECTURE 

2.2.1 VEDIC MULTIPLIER 

The design of high speed Vedic Multiplier using 

the techniques of Ancient Indian Vedic 

Mathematics that have been modified to improve 

performance. Vedic Mathematics is the ancient 

system of mathematics which has a unique 

technique of calculations based on 16 Sutras. The 

work has proved the efficiency of 

UrdhvaTriyagbhyam– Vedic method for 

multiplication which strikes a difference in the 

actual process of multiplication itself. It enables 

parallel generation of intermediate products, 

eliminates unwanted multiplication steps with 

zeros and scaled to higher bit levels using 

Karatsuba algorithm with the compatibility to 

different data types. Urdhvatiryakbhyam  Sutra  is  

most  efficient  Sutra  (Algorithm),  giving  

minimum delay for multiplication of all types of 

numbers, either small or large. Further, the Verilog 

HDL coding of Urdhvatiryakbhyam Sutra for 

32x32 bits multiplication and their FPGA 

implementation by Xilinx Synthesis Tool on 

Spartan  3E  kit  have  been  done and output  has  

been  displayed  on  LCD  of  Spartan  3E  kit.  The 

synthesis  results  show  that  the  computation  time  

for  calculating  the  product  of  32x32 bits is 

31.526 ns 

4.1.1. VEDIC ALGORITHIM 

Multiplication  is  an  important  fundamental  

function  in  arithmetic  operations. 

Multiplication-based  operations  such  as  Multiply  

and  Accumulate(MAC)  and  inner product  are  

among  some  of  the  frequently  used  

Computation-  Intensive  Arithmetic 

Functions(CIAF)  currently  implemented  in  many  

Digital  Signal  Processing  (DSP) applications  

such  as  convolution,  Fast  Fourier  

Transform(FFT),  filtering  and  in microprocessors  

in  its  arithmetic  and  logic  unit  [1].  Since  

multiplication  dominates  the execution  time  of  

most  DSP  algorithms,  so  there  is  a  need  of  

high  speed  multiplier. Currently,  multiplication  

time  is  still  the  dominant  factor  in  determining  

the  instruction cycle time of a DSP chip.      The  

demand  for  high  speed  processing  has  been  

increasing  as  a  result  of  expanding  computer  

and  signal  processing  applications.  Higher 

throughput arithmetic operations are important to 

achieve the desired performance in many real-time 

signal and image processing applications [2].  One  

of  the  key  arithmetic  operations  in  such 

applications  is  multiplication  and  the  

development  of  fast  multiplier  circuit  has  been  

a subject  of  interest  over  decades.  Reducing  the  

time  delay  and  power  consumption  are very  

essential  requirements  for  many  applications  [2,  

3].  This work presents  

different multiplier architectures. Multiplier based 

on Vedic Mathematics is one of the fast and low 

power multiplier.  Minimizing  power  

consumption  for  digital  systems  involves  

optimization  at  all levels  of  the  design.  This  

optimization  includes  the  technology  used  to  



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   15 

 

 

implement  the digital  circuits,  the  circuit  style  

and  topology,  the  architecture  for  implementing  

the circuits  and  at  the  highest  level  the  

algorithms  that  are  being  implemented.  Digital 

multipliers  are  the  most  commonly  used  

components  in  any  digital  circuit  design.  They 

are  fast,  reliable  and  efficient  components  that  

are  utilized  to  implement  any  operation. 

Depending  upon  the  arrangement  of  the  

components,  there  are  different  types  of  

multipliers available. Particular multiplier 

architecture is chosen based on the application.      

In  many  DSP  algorithms,  the  multiplier  lies  in  

the  critical  delay  path  and ultimately  determines  

the  performance  of  algorithm.  The speed  of  

multiplication operation  is  of  great  importance  

in  DSP  as  well  as  in  general  processor.  In  the  

past multiplication was implemented generally 

with a sequence of addition, subtraction and shift  

operations.  There  have  been  many  algorithms  

proposals  in  literature  to  perform multiplication, 

each offering different advantages and having 

tradeoff in terms of speed, circuit complexity, area 

and power consumption.      The  multiplier  is  a  

fairly  large  block  of  a  computing  system.  The 

amount of circuitry involved is directly 

proportional to the square of its resolution i.e.  A 

multiplier of size n bits has n2   gates.  For 

multiplication algorithms performed in DSP 

applications latency and throughput are the two 

major concerns from delay perspective. Latency is 

the real  delay  of  computing  a  function,  a  

measure  of  how  long  the  inputs  to  a  device  are 

stable  is  the  final  result  available  on  outputs.  

Throughput is the measure of how many 

multiplications can be performed in a given period 

of time; multiplier is not only a high delay block 

but also a major source of power dissipation. 

ThatꞋs why if one also aims to minimize power 

consumption, it is of great interest to reduce the 

delay by using various delay optimizations.      

Digital  multipliers  are  the  core  components  of  

all  the  digital  signal  processors (DSPs)  and  the  

speed  of  the  DSP  is  largely  determined  by  the  

speed  of  its  multipliers[11]. Two  most  common  

multiplication  algorithms  followed  in  the  digital  

hardware  are  array multiplication algorithm and 

Booth multiplication algorithm. The computation 

time taken by  the  array  multiplier  is  

comparatively  less  because  the  partial  products  

are  calculated independently in parallel. The delay 

associated with the array multiplier is the time 

taken by  the  signals  to  propagate  through  the  

gates  that  form  the  multiplication  array.  Booth 

multiplication is another important 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   16 

 

 

 

4.1.2. VEDIC MULTIPLICATION 

   The proposed multiplications were implemented 

using two different coding techniques viz., 

conventional shift & add and Vedic technique for 

4, 8, 16, and 32 bit multipliers. It is evident that 

there is a considerable increase in speed of the 

Vedic architecture.  

4.1.2.1. DESIGN OF VEDIC MULTIPLIER 

Urdhvatiryakbhyam Sutra is a general 

multiplication formula applicable to all cases of 

multiplication. It literally means “Vertically and 

Crosswise”. To illustrate this multiplication 

scheme, let us consider the multiplication of two 

decimal numbers (5498 × 2314). The conventional 

methods already know to us will require 16 

multiplications and 15 additions. An alternative 

method of multiplication using 

Urdhvatiryakbhyam Sutra is shown in Fig. 1. The 

numbers to be multiplied are written on two 

consecutive sides of the square as shown in the 

figure. The square is divided into rows and 

columns where each row/column corresponds to 

one of the digit of either a multiplier or a 

multiplicand. Thus, each digit of the multiplier has 

a small box common to a digit of the multiplicand. 

These small boxes are partitioned into two halves 

by the crosswise lines. Each digit of the multiplier 

is then independently multiplied with every digit of 

the multiplicand and the two-digit product is 

written in the common box. All the digits lying on a 

crosswise dotted line are added to the previous 

carry. The least significant digit of the obtained 

number acts as the result digit and the rest as the 

carry for the next step. Carry for the first step (i.e., 

the dotted line on the extreme right side) is taken to 

be zero [9].   

 

Figure 1: Alternative way of multiplication by 

Urdhvatiryakbhyam Sutra.   

    The design starts first with Multiplier design, 

that is 2x2 bit multiplier as shown in figure 2. Here, 

“UrdhvaTiryakbhyam Sutra” or “Vertically and 

Crosswise Algorithm”[4] for multiplication has 

been effectively used to develop digital multiplier 

architecture. This algorithm is quite different from 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
                                       International Journal of Advanced Research in Management, Architecture, Technology and   
                                       Engineering (IJARMATE) 
                                       Vol. 3, Special Issue 2, April 2017 

 

                                                                  All Rights Reserved © 2017 IJARMATE   17 

 

 

the traditional method of multiplication, which is 

to add and shift the partial products.   

 

FIG 2. 32 BIT PROPOSED VEDIC MULTIPLIER  

    To scale the multiplier further, Karatsuba – 

Ofman algorithm can be employed. 

Karatsuba-Ofman algorithm is considered as one 

of the fastest ways to multiply long integers. It is 

based on  the divide and conquer strategy . A 

multiplication of 2n digit integer is reduced to two 

n digit multiplications, one (n+1) digit 

multiplication, two n digit subtractions, two left 

shift operations, two n digit additions and two 2n 

digit additions.The   Optimized Vedic multiplier 

case was found to be 31.526ns. To compare it with 

other implementations the design was synthesized 

on XILINX: SPARTAN: xc3s500e-5fg320 

synthesis result for various implementations 

TABEL1: 

 

. 

CONCLUSION  

The project presented here is an adaptive 

filter using bit serial adder and is functionally 

verified and simulated using Modelsim software 

and implemented on Spartan 3E FPGA kit using 

Xilinx software, parameter like area, speed and 

power will be compared to their implementation 

using conventional multiplier & adder 

architectures. 

. In this design uses single half adder and full 

adder for design of adder with applying the 

input as a serious of clock pulse and also getting 

the output as a serious of clock pulse to reduce 

the area of the adder as well as multiplier and 

adaptive filter. 


