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Abstract—This paper proposes a distributed control approach 
to coordinate multiple energy storage units (ESUs) to avoid vio- 
lation of voltage and thermal constraints, which are some of the 
main power quality challenges for future distribution networks. 
ESUs usually are connected to a network through voltage source 
converters.Inthispaper,bothESUconvertersactiveandreactive 
powerareusedtodealwiththeabovementionedpowerqualityis- 
sues.ESUs’reactivepowerisproposedtobeusedforvoltagesup- port, 
while the active power is to be utilized in managing network 
loading. Two typical distribution networks are used to apply the 
proposed method, and the simulated results are illustrated in this 
paper to show the effectiveness of thisapproach. 

Index Terms—Consensus algorithm, distributed control, distri- 
butionnetwork,energystorageunit(ESU),networkloadingman- 
agement, voltage support. 

 

 
I. INTRODUCTION 

 
Sasustainablesolutionforfutureenergycrisis,itisan-

ticipatedthatfuturedistributionnetworkswillseeawide-spread use 

of renewable energy sources such as PV,windtur-bine and fuel 

cell [1]. Distribution networkswithrenewableenergy sources 

can encounter two main 

challenges.AtypicalloadcurveforNSWinAustralia[2]showsthatd

uringthepeakloadperiod,generationisnormallyloworzero,which

maycause voltage drop along the network [3]. On 

theotherhand,in peak generation period, when generated 

powerexceedstheload, surplus power is injected to the grid. This 

willcausere-

versepowerandhencemayresultinvoltagerisealongthenet-work 

[4]–[6]. Additionally, in both peak 

generationandpeakloadperiods,thermalconstraintsforlineandpo

wertransformer 

can be violated[7]. 

The strategies suggested by researchers to avoid these issues 

can be divided in the followingcategories: 

1) Network upgrading. References [8]–[10] propose the in- 

crease of conductor cross section to deal with voltage rise. 

This approach requires high investment cost which is not 

attractive forutilities. 
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S.2013.2272092Changing network static set points such as 
transformer tap changers [9], [11]. This approach is not 
practical due to randomness of load and generation which 
needs frequent changes of setpoints. 
2) Active power curtailment [12], which reduces the energy 

efficiency. 

3)  

The unbalance between the generated power and load, during 

boththehighloadandhighgenerationperiods,causesthenoted 

issues [13]. As a result, the introduction of energy storage unit 

(ESU) as a buffer can be a promising solution which can store 

surplus power during the peak generation periods and use it in 

peak load periods[14]–[16]. 

The main challenge in the utilization of multiple ESUs is the 

coordination control strategy [17]. There are three types of co- 

ordinationstrategiesthatcanbetaken.Thefirststrategycanbe 

provided through centralized manner in which a central con- 

troller coordinates ESUs [18], [19]. The drawback of this ap- 

proach is that it would require extensive data base with high 

speedandfastcalculatingcomputers,alongwithbroadbandnet- 

works. This can be too expensive for the current state of art.    

This can also be less reliable due to communication failure and 

computer freezing [20]. The second approach is the localized 

controlstrategy,basedonlocalmeasurementsonly,suchasthe ones 

proposed in [12]  and  [21].  This  control strategy is  robust in the 

sense that only local measurements are utilized. How- ever, it 

cannot effectively utilize all available resources in the network 

due to the lack of broader information. A distributed 

controlstrategy,thethirdapproach,canbeasefficientasacen- 

tralized approach while avoiding its drawbacks [22]. However, 

the robustness of this approach still depends on the communi- 

cationlinks. 

This paper proposes an effective and robust approach which 

can coordinate multiple ESUs to manage and control voltage 

and loading in distribution networks. As voltage needs fast and 



 

 

robust control, a combined localized and distributed control ap

proach is proposed to regulate the ESUs reactive power to 

deal with voltage issues. In addition, a distributed control 

strategy based on consensus algorithm is proposed to manage 

network 

loading,whichdividestherequiredactivepowerequallyamong 

ESUswithrespecttotheirmaximumavailableactivepower.

 
II. PROPOSEDAPPROACH 

National  standards  usually  allow  a  maximum  of  6% 

voltage  variation  in  distribution  network  [12].  

Considerthe 
 

 

 

 
Fig. 1.   Radial distribution network with multiplePVs. 

 

 
 

distribution network with PV as the renewable energy sources,    

as shown in Fig. 1. Distribution network is designed in such a  

way that the voltage level of different nodes is within the stan

dard limits, in normal operating condition. However, practical 

measurements show that the permissible lower voltage    limit

in critical buses is usually violated in peak 

load periods, which usually occur in the evenings when PVsdo 

not generate any active power. In addition, the permiss

lower limit for network loading  

be violated during this period, which is notacceptable.

Similarly, the violations can occur during the midday when 

network is in its low load period, while the PVs are in their 

maximumgenerationmode.Duringthisperiod,thepermissible 

upper voltage limit and permissibleupper

network loading limit can 

bereached.TheapproachofthispaperistocoordinateESUs’activea

ndreactive power to avoid theseproblems. 

ESUsareaddedtothenetworkofFig.1tocopewiththeprob

lems. The proposed distributed control structure for coordina

tionofESUsisshowninFig.2.ThedashedarrowsinFig.2(a) show 

the information flow, where the neighboring ESUs are 

communicated to coordinate their operation. The proposed in

ternalcontrolstructureforeachESUisshowninFig.2(b).The 

referencevalueforESU’sactiveandreactivepower(

and ) depend on information state of each  

ESUandits neighbors. As noted before, the proposed control 

structure includes voltage and network loading management

Details of the proposed approach are presented below.

 

A. Network Loading Management 
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to share the required active power with the same ratio among 
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applied this algorithm to coordinate unmanned air vehicles for 
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In this application, a higher control level named the leader is 

defined to initiate the ESUs coordination. The internal control 
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drawn power from or injected to 

voltage level network), and use this as the controllable 
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Fig. 2. Proposed approach. (a) Distributed control structure. (b) Internal con
trol structure for eachESU. 

 
 

 

Fig. 3.   Proposed control structure forleader.
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load period, if  is more than  

is in its normal operation mode and ESUs coordination is not 

needed. However, if violates  

nationisinitiatedbyleaderanditiscontinueduntilthevalueof

becomes more than . The same procedure is 

applied for high generationperiod. 

The proposed distributed control strategy for ESUs active 

power can be written in a general formas 

 

 
whereis the information state of leader,is the information 

stateofthethESUactivepowerwhichiscommunicatedamong 

neighboring ESUs, denotes the communication link between 

the   th and  thESUs, ; if the  th 

ESUsendsinformationto the  

 .Inaddition, ; ifthe thESU can get 

information from the   leader,othe

varyingcoefficientscanbeorganizedinamatrixof the complete 

communication topologyas 

 
 

 

Two general objectives need to be achieved to coordinate 

ESUs for network loading management. The first objective is 

todesignacontrolforeachESUtoreducethenetworkloading less 

than the critical limits. In other words, in peak generation 

period (3) and in peak load period (4) need to be met at equilib

rium  point  of  ESUs coordination: 

 

 

The second objective is to design a control for each ESU in 

suchawaythattherelationshipin(5)ismetatequilibriumpoint 

ofESUscoordination.Inotherwords,therequiredactivepower 

istobesharedatthesameratioasitsmaximumavailableactive 

power for each ESU . As shown in Fig. 2(b), the value 

of depends on ESU state of charge and can be considered 

for a specified period of time (for example 1 hour). In other  

words, for 1 hour, the value of is the maximum active 

power which the  th ESU can continuously support. In this 

it can be said that the required active power will be shared with 

respect to ESU state of charge which is an important parameter  

for theESU: 
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ESU can be determinedas 
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In real case, the interaction among ESUs and leader occurs      

discrete time steps. So, (6), (7) and (8) are replaced with(9),

(10) and (11),respectively: 
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For  the entire network, can be considered as the

entry of a row stochastic matrix in which the sum of each 

row is equal to1. 

Finally, the required contribution of each ESU at each time 

step is updatedby 
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operation mode. If all ESU bus voltages are less than  

, the network isin normal operation mode and 

ESUs reactive power coordina- tion is not needed. However, 

if the bus voltage of any ESU vi- olates the limit, it initiates 

the distributed algorithm to support 

thevoltage.Thecoordinationwillcontinueuntilallvoltagesare 

reduced to less than . In this situation, all 

ESUs decrease their reactive power step by step. The same 

procedure is applied to avoid under-voltage, inwhichcase

and  de

networkoperation. 

Two objectives need to be achieved to coordinate ESUs’ 

re- active power when required. The first is to design a 

control for each ESU to keep the voltage within 

criticallimits(between and  

ESU control as givenin 

(14) and(15): 
 

 

The voltage limit violation is a local problem, not a net
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Fig. 4.   Proposed localized voltage control for eachESU.

 

 
 

voltage. This value is determined based on a control structure 

shown in Fig. 4. In addition, represents transition weights 

which are potentially time-varying and dependent on commu

nication structure. The weights, determined based on the bus 

voltage sensitivity to the reactive power, share the required re

active power in efficient way among ESUs (objective 2). This 
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A. Case1 

A typical radial distribution network is selected, as the first 

case, to show the effectiveness of the proposed approach. The 

networkparametersandloaddetailscanbefoundin[20].There 

are5PVsconnectedinthisnetworkwithratinglistedin

network structure with three ESUs and its communication 

topologyisshowninFig.5.Itisassumedfortheperiodofstudy, 

allESUscancontinuouslysupportthepowershownin

ItisassumedthatESUinverterratingisincreasedbyjust11.8% 

to have the ability to supply nearly 50% reactive power while 

supplying full rated active power. The limits for voltage and 

network loading are listed in Tables III andIV.

 
Fig. 5.   Radial distribution network with multipleESUs.
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Fig.6. Proposedcontrolapproach.(a)ESUsbusvoltage.(b)Networkloading.

(c) ESUs active power. (d) ESUs reactivepower.
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Fig. 7.   Loop distribution network with multiple ESUs.

 
 

 

Fig. 8.   Load and generation profiles at eachnode. 

 

 
TABLEVI 

VOLTAGE  LIMITS IN THE PROPOSED APPROACH

 

 

 

is assumed that all buses have the same generation and load 

profiles, as shown in Fig. 8. The limits for voltage andnetwork 
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that the communication link between ESU 4 and 5 is 
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approach, Fig. 9 shows the bus voltages, network  loading,ESUs
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active power, ESUs reactive power in different time steps. The 

time sequences of the operation are detailed asfollows:

1) Between 0 s and 50 s, the network loading and all ESUs 

voltages are in desirable range and no ESUs 

is needed. 

2) At 50 s, injection increases while the network loading 
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loading.  At  , the network loading 
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ESUs contribute at the same ratio as their available power 

(the second objective isachieved).

3) At 250 s, network loading goes to the desirable range. As 

a result, ESUs reduce their active power contribution step 

by step, until they stopoperating.

4) At 300 s, critical limits for network loading and the voltage 
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ESUs 1, 2, 3 and 4 are coordinated for loading reduction. 

At , communication links becomeavailablebe

tween ESUs 4 and 5. Consequently, the ESU information 

states for active and reactive power are updated again. At 

this stage, the information states of ESUs active pow

asfollows: 

 

 
As can be seen, at the equilibrium point of this coordina

tion, information states of all ESUs active power converge  

to the value of 0.51. The total required active power there

foreis379.21kW.Thisvalueismorethanthecasewithno 

communication drop (the resu

limitation) which is 291.41kW.

These results show that the communication malfunction 

does not affect the robustness of the proposed approach, 
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dination and may somewhat red

management. 
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Fig. 9. Proposed control approach with communication drop. (a) ESUs bus 
voltage.(b)Networkloading.(c)ESUsactivepower.(d)ESUsreactivepower. 

 

 
 

5) At 650 s, the network loading and all voltages go to the 

desirable range. At this point, ESUs stop their contribution 

for voltage support and network loadingmanagement. 



  
 

 

 
 

IV. CONCLUSION 

This paper proposes a new approach to coordinate 

multiple ESUs to manage voltage and loading in distribution 

networks. ESU’s active power is used to manage network 

loading, and ESU reactive power is utilized for voltage support. 

As  the  voltage needs fast and robust control, a combined 

localized and distributed control approach is used to coordinate 

the ESU re- active power. This method is designed to use the 

most adjacent ESUs to the violated bus voltage. For loading 

management, a distributed control strategy based on 

consensus algorithm is employed to coordinate ESUs’ active 

power. The proposed consensus algorithm has been designed 

to share the required active power with the same ratio among 

ESUs with respect    to their available active power. This 

approach has been tested on two systems and the results show 

that the algorithm works effectively. 
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