
ISSN (ONLINE): 2454-9762 

ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
International Journal of Advanced Research in Management, Architecture, Technology and 

Engineering (IJARMATE) Vol. 2, Special Issue 12, April 2016. 

All Rights Reserved @ 2016 IJARMATE                                                    50 

SYNAPTIC MEMORY IN SEQUENTIAL CIRCUIT USING 10T SRAM 

IN NEURAL NETWORK 

       

 

 

 

Abstract-A hybrid analog/digital VLSI is 

implemented in a spiking neural network 

with programmable synaptic weights. Static 

Random Access Memory  module is 

interfaced to a fast current-mode event-

driven DAC for producing synaptic 

currents with the appropriate amplitude. 

These currents produce   realistic temporal 

dynamics. SRAM cells acts as a transceiver 

and receiving asynchronous events in input 

then performing neural computation with 

hybrid analog / digital circuits on the input 

spikes. Eventually producing digital 

asynchronous events in an output. Input, 

output, and synaptic weight values are 

transmitted to/ from the chip using a 

common communication protocol based on 

the Address Event Representation (AER).  

Tanner tool is used to implement the neural 

architecture.The neural core representation 

is possible to interface with  the device to a 

workstation or a micro-controller. It  

explore the effect of different types of 

Spike-Timing Dependent Plasticity learning 

algorithms. It is  for updating the synaptic 

weights values in the SRAM module. To 

improve the efficiency of  the output signal 

and to avoid the spikes a new set of neural 

core structure is used, it have a more 

number of filters are used . It is feed 

forward network based system. While using 

10T SRAM in proposed work to reduced a 

power consumption and delay. Increase the 

efficiency of the system  and more low pass 

filter in the neural core is used to reduce 

spike in a  input signal. 
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I. INTRODUCTION 

 
             Spiking  neural networks[5] 

represent a promising computational paradigm 

for solving complex pattern recognition and  

sensory processing  tasks that are  difficult  to  

tackle  using standard machine vision and 

machine learning techniques.The chip using a 

common communication protocol based on the 

Address Event Representation (AER) and 

Dependent Plasticity (STDP) learning 

algorithms for updating the synaptic 

weights[13] values in the SRAM module. In 

memory design  using STDP design power 

dissipation is reduced  Efficiency of memory 

store is increased. In this specific scenario, this 

suggests the design of full custom 

analog/digital Very Large Scale Integration 

(VLSI) neuromorphic systems [11]. However, 

to meet the requirement of real-time 

interaction with the environment, some of the 

recently proposed VLSI design solutions that 

operate only on “accelerated time” scales  are 

not suitable. Similarly, neural VLSI solutions 

that focus on large-scale systems simulations 

are not ideal, as they compromise the low-

power or compactness requirements. compact 

full-custom VLSI device that comprises low-

power sub-threshold analog circuits and 

asynchronous digital circuits to implement 

networks of spiking neurons with 

programmable synaptic weights .  

 

 Implementation of neural computation 

is performed in the analog domain while the 

communication of spikes between neurons is 

carried out asynchronously in the digital 

domain. Specifically, the analog circuits 
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implement neural and synaptic dynamics in a 

very compact and power efficient way, while 

digital asynchronous circuits implement a real-

time event (spike) based communication 

protocol[3]. We designed a  new  set of  

asynchronous circuits for interfacing  the 

asynchronous events  to conventional five-bit 

Static Random Access Memory (SRAM) cells, 

to manage the storage of the network’s 

synaptic weight values the programmable 

SRAM cells can update the network’s synaptic 

weights using the same asynchronous 

communication protocol used to transmit 

spiking events across the network.  Also the 

idea of programming different parameters in 

spiking neural networks[9], such as synaptic 

weights[13], or even dendritic tree and 

synaptic routing structures , is not new. 

However, as these solutions typically require 

long settling times, they are not ideal for 

integration in circuits that employ fast 

asynchronous digital event-based 

communication circuits. Here we propose a 

solution that uses both SRAM cells and fast 

Digital to Analog Converters (DACs) 

interfaced to asynchronous digital circuits, to 

either set the synaptic weights. 

 

      II.   EXISTING TECHNIQUES 
 

 Neural computation is performed in 

the analog domain while the communication of 

spikes between neurons is carried out 

asynchronously in the digital domain. 

 

 
 
Fig 1  Main Block Diagram Of Neural Network 

 

A.  SYNAPTIC MEMORY 
 

 The SRAM architecture is illustrated 

in Fig. 2. Two row and column decoders 

receive five bits each, encoded in dual-rail, 

and generate a one-hot code at the output.  A 

standard  six-transistor circuit (6T SRAM 

design) is used to implement the memory cells. 

The memory array has 32× 32 words, each 

word comprising five bits. An output filter  

produces a dual-rail representation of the data  

During idle mode, when there is no input, the 

Bitline and /Bitline signals are pulled up to 

VDD and the output of the filter circuits [b0.0 

and b0.1 are both set to Gnd. During a “Read” 

operation, the X-decoder of the memory block 

selects a column (via the WL word-line); the 

Bitline and /Bitline signals of the five memory 

cells in the selected column are then set to 

values that correspond to the content of the 

five-bit memory word; and the Y-decoder 

enables the transmission gates of the 

corresponding row, thus allowing all the 

driven Bitline and /Bitline signals of the 

selected word to reach the input of the filter 

circuit. Finally, the filter circuit generates 

dual-rail data from the Bitline and /Bitline 

signals, setting either of the b0.0 or b0.1 lines 

to VDD, according to the content of the 

memory cell. The content of the memory block 

is programmed by setting the Write_enable 

signal to VDD and transmitting the five bits 

that represent the content of the memory cells 

together with the standard address-event data. 

In this “write” mode the memory bits can drive 

the set of Bitline and /Bitline signals belonging 

to the row selected by the Y-decoder input 

data. As the X-decoder input data enables only 

one of the SRAM column WL wordlines, only 

the memory cell with the corresponding X- 

and Y-address will change its content. In 

addition to being stored in the 6T SRAM cell, 

the content of the memory word is also passed 

through to the neural-core, for producing 

synaptic currents[3]  with the desired 

amplitude. 
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Fig. 2.    Memory architecture. 

 

B. NEURAL CORE 
 

 The neural-core block comprises 32 

Integrate-and-Fire (I&F) neurons, four synapse 

circuits (three excitatory and one inhibitory) 

per neuron, and a synapse address- 

demultiplexer circuit. 

 

1) Neuron Circuit: The neuron circuit is the 

Adaptive exponential I&F neuron described in 

but with an extra free parameter corresponding 

to the neuron’s reset potential. The circuit 

diagram of this new design is shown in Fig. 3. 

The neuron’s input DPI integrates the input 

current until it reaches the neuron’s threshold 

voltage. At this point there is an exponential 

rise due to the positive feedback in the silicon 

neuron’s circuit that causes the neuron to 

generate an action potential. The membrane 

potential is then reset to the neuron’s[10] 

tunable reset potential. extremely low power, 

consuming about 7 pJ per spike. In addition, 

the circuit is extremely compact compared to 

alternative designs, while still being able to 

reproduce interesting dynamics, such as spike-

frequency adaptation[5] 

 

 
 

Fig 3. Neuron circuit 

 

2) Synapse Circuit: The synapse circuit 

includes three main functional blocks (see Fig. 

4): a DPI to implement the synaptic dynamics; 

a DAC circuit to generate the appropriate 

weighted current fed in input to theDPI; and a 

validity-check circuit to activate the DAC 

when there is valid data at its input, and to 

produce an acknowledge signal fed back to the 

asynchronous controller[2]. As the output of 

the memory block generates valid DR 

representation data, the synapse validity-check 

block raises its PiXAck signal and feeds the 

memory content data to the DAC. The PiXAck 

signals of all synapses are wire-OR’ed 

together. The result is used by the 

asynchronous controller to complete the 

handshaking cycle. The type of synapse circuit 

selected  depends on the address-event data 

sent to the neural-core S-decoder. The 

asynchronous data and control paths of SRAM 

and neural-core blocks are independent. For 

correct operation, the S-decoder output should 

be ready before the weight bits are sent to the 

synapse DAC.  timing assumption that the 

Decoder-S data path is faster than the memory 

access-time. The memory access time includes 

both the decoding time and the time required 

for the Bitline signals to be driven by the 

memory control circuits.  

  

 The synapse DAC circuit is activated 

by both the Decoder-S output and the validity-

check block. The five bits that encode the 

weight value control switches on a 

corresponding number of branches, each 

connected to a current source, programmable 

via the bias-generator block. In principle, for 

perfect binary encoding the current in each 
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branch should be twice as large as the current 

in the previous branch. But we chose to have 

five independent current sources in order to 

fine tune them  and compensate for mismatch 

effects across the synapse population. The sum 

of the currents from the five branches of each 

synapse DAC produces the final current, used 

by the corresponding DPI synapse circuit[8]. 

We bias the DPI circuit in its linear range to 

implement a linear first-order low-pass filter.  
 

 
 

Fig 4 . Synapses circuit 

 

time-division multiplexing it in time to 

integrate their independent contributions. The 

DPI output current will therefore be the 

integral of the weighted current pulses 

produced by the address-events sent to the 

memory-cells of the corresponding  row. 
 

            

III      MODIFIED 10T SRAM AND 

NEURAL CORE 

      10T SRAM  cell performs better 

then 6T SRAM cell in terms of reliability and 

stability. 6T  SRAM cell has less reliability at 

low supply voltage due to degradation in noise 

margins. Simple changes are made in neural 

core  to reduce a power consumption. Increase 

the transistor level in low pass filter to reduce 

the spiking noise[4] in given input signal. 
 

 
Fig 5. 10T SRAM 

 

In read mode, WL is enabled and VGND is 

forced to 0 V while W_WL remains disabled. 

The disabled W_WL makes data nodes (‘Q’ 

and ‘QB’) decoupled from  bitline during the 

read access. Due to this isolation, the  read 

SNM of our 10T cell is almost same as the 

hold SNM of conventional 6T cell. Since hold 

SNM is much larger than read SNM in the 6T 

cell, read stability is remarkably improved in 

our 10T cell (Fig. 5). Depending on the cell 

data value, one of the bitlines starts 

discharging after WL is enabled. In our 10T 

cell, the read value is developed as an inverted 

signal of cell data.During write mode, both 

WL and W_WL  are enabled to transfer the 

write data to cell node from  bitlines. As 

discussed in the introduction, weak writability 

is another major challenge for subthreshold 

SRAMs. Since our 10T cell has series access 

transistors, writability is a critical issue. In 

some previous subthreshold SRAMs Vdd  is 

collapsed to enhance writability. However, it 

also degrades hold stability of the SRAM cells 

in other row sharing the line. To operate this 

technique successfully, each row should have 

individual line , resulting in large area penalty 

(more than 50% in thin-cell layout assuming 

poly pitch ) 

 

 The neuron circuit is the Adaptive 

exponential I&F neuron  but with an extra free 

parameter corresponding to the neuron’s reset 

potential. 
 

 
Fig 6. Modified neuron core 

 

 P1 and P2  act as a digital low pass 

filter. Then P3 & N3 & N2  act as an amplifier 

usingcurrent mirror.current mirror is nothing 

but  a transmission drain  and gate is 

connected together. P4 & N4 act as reset circuit 

as well as P6 & P5, N5 & N6 ,N7 & N8 act as a 

low pass filter. 
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V.  RESULT AND DISCUSION 

 

    The proposed circuit is simulated 

using tanner  in the high-performance 130-nm 

technology. The supply voltage used in the 

simulation is 0.5 V. S-Edit is a schematic 

capture tool that supports integrated analog 

simulation with automatic conversion from 

cadence and view draw schematics. User can 

run simulations and cross-probe from S-Edit, 

making the design process real-time and more 

efficient. 

 

 
 

Fig 7. Simulation result of neural  architecture 

 

 
 

Fig 8. Power Report of  Neural Architecture 

 

 

Structure 

 

Existing 

System 
10T 

SRAM 

Modified 

neural 

Architecture 

Technology 

CMOS 

130nm 130nm 130nm 

Supply voltage 1.8v 1.8v 1.8v 

Power 

consumption 

4.12674e

-002 

watts 

2.2718

3e-003 

watts 

5.91022e-002 

watts 

 

Table 1. performance comparison 

  

 From the table 1 it is to be known that 

the proposed neuron architecture consumes 

less power compared with other circuit blocks. 

In all the techniques the technology and the 

supply voltage are same. Due to the low power 

filter power consumed is reduced. 
 

VI. CONCLUSION 
 

        A  novel neuromorphic VLSI 

device comprising both a spiking neural-core 

with biophysically realistic analog synapse and 

neuron circuits, as well as a fully 

asynchronous digital memory block. it is 

possible to integrate fast digital circuits next  

to very slow analog ones, using time constants 

that span over seven orders of magnitude, and 

to obtain remarkable performance figures with 

low mismatch. The proposed work  is to 

improve the efficiency of  the output signal 

and to avoid the spike a new set of neural core 

structure is used  it have a more no of filter to 

eliminate the spikes in a given input signal. it 

is feed forward network based system. While 

using 10T SRAM reduced a power 

consumption and delay. Increase the efficiency 

of the system  and more low pass filter in the 

neural core is used to reduce spike in a  input 

signal. 
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