
ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 231

LONGEST APPROXIMATE TIME TO END

SCHEDULING ALGORITHM IN HADOOP

ENVIRONMENT

R.Thanga selvi,
M.E: Department of Computer Science,

VV College of Engineering,
Tirunelveli, India

golda.selvi@gmail.com

R.Aruna,
M.E: Department of Computer Science,

Jayamatha Engineering College ,
Kanyakumari, India
arunartr@gmail.com

Abstract— MapReduce has become far and wide for processing
large data volume jobs. As the number and deviation of jobs to
be executed across different clusters are increasing, so it is the
complexity of scheduling them efficiently to meet required
objectives of performance. This paper presents a LATE
MapReduce scheduling algorithms expected for such
complicated scenarios. A taxonomy is furnished for Map-
reduce algorithms based on their runtime nature. The algorithms
considered for each hierarchical level of MapReduce scheduling
are described in detail. Some pointers for future research to
improve the efficiency some scheduling techniques are provided.
Another aspect of MapReduce is that the size of their clusters is
regularly in hundreds and thousands, at the same time it is used
for processing infrequent batch and interactive tasks in parallel
across these machines. Thus there is a need to detect at energy
efficiency of MapReduce clusters. A survey on some of the
algorithm is proposed to improve the energy efficiency of
MapReduce . The studied techniques have been classified based
upon the MapReduce element they work-on. Details of the
technique in each category is provided. Few suggestions for
future research are given based on the gaps observed in these
work.

Keywords— MapReduce, Scheduling, LATE, heterogeneous,

hadoop, DataNode, NameNode
1 . INTRODUCTION
With the current trend in increased use of World Wide Web in
everything, lot of data is generated and analyzed. Web search
engines and social networking sites discover and segregate
every user action on their sites to recover site design, recognize
spam and malfeasance, and advertising opportunities. Facebook
collects 15 Tera Bytes of data each second into its Peta Byte
scale data warehouse [26]. Powerful telescopes in astronomy,
genome sequencers in biology, and particle accelerators in
physics are churning out huge amounts of data for scientists.
Key scientific breakthroughs are proposed to determine
computational experiment of such data. Many basic and applied
science disciplines rapidly have computational areas, for
example computational economics, computational biology, and
computational journalism. Given these many use cases, there is
a need to preserve improving the BIG Data management
techniques. The processing of this can be best done by
Distributed computing and parallel processing mechanisms.

Map-reduce is one of the most popularly used such technique.
MapReduce breaks a computation into little tasks that run in
parallel on multiple machines, and scales easily to indeed large
clusters of inexpensive commodity hcomputers. MapReduce is
becoming a overall programming model. The best example is
Google, which uses its MapReduce context to process 20
petabytes of data per day [7]. Other instance are of Mars [5] that
harnessed computer graphics processors power for MapReduce.
Hadoop, an open-source MapReduce implementation, has
extensively been adopted by industries such as Facebook, and
academia. Hadoop [2] is being deployed in many cloud
platforms also. Example, Amazon has equipped their software
stack with Hadoop to facilitate continually large-scale data
applications on Amazon Elastic Cloud Computing [1]. The New
York Times rented 100 virtual machines for a day to shift 11
million scanned articles to PDFs [10]. In addition, researchers
from University of Maryland and PARC are starting to consider
Hadoop for seismic simulation, natural language processing, and
web data mining [11, 25]. Due to its great adoption, the attitude
of Hadoop in particular (and MapReduce in general) has become
an consistent research topic. Each MapReduce application is run
as a job that is submitted to the MapReduce runtime. Each job is
split into a large number of Map and Reduce tasks before being
started. The runtime is in charge of running tasks for every job
until they are completed. The tasks are actually executed in any
of the slave nodes that the MapReduce cluster comprises of. In
particular, the task scheduler is responsible for deciding what
tasks are run at each moment in time, as well as what slave node
will host the task execution. One basic principle used is: moving
computation towards data is cheaper than moving data towards
computation. So, Hadoop attempts to schedule map tasks in the
vicinity of input chunks seeking reduced network track in an
environment characterized by scarcity in network bandwidth. In
a multi-job environment, the task scheduler has the
responsibility to ensure that performance is achieved for all jobs.
Initially MapReduce was used for batch data processing,but it is
now being used in shared, Multi-user environments where
different type of jobs with different priorities need to be
executed: from small, almost interactive executions, to very long
programs that can take hours to complete. In these new and
changing scenarios, task scheduling is becoming even more
relevant as it is responsible for deciding what tasks are run, and
thus the performance delivered by each application to each user.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 232

The US EPA report [8] has indicated that the power
consumption of data centers is growing at a fast rate. It states
that the energy usage at datacenters doubled between 2000 and
2006 which is equivalent to the electricity consumed by 5.8
million average U.S household. The report predicted that their
power consumption will double again in 2011 to go up to 100
billion kilowatt hours/year which would be worth of $7.4
billion/year. This indicates the increasing operational costs for
the enterprise data centers. The map-reduce clusters form a big
part of data centers contributing to these huge energy expenses.
The sheer scale of the Hadoop MR clusters make it critical to
improve their operating eciency, including energy. Yahoo!s
datacenters process 170 petabytes of data on cluster of 38000
servers [3]. Such large clusters are created to support peak
workloads. It was observed that Facebook workload had high
peak-to-average ratios [29] then the large clusters remain under
utilized consuming peak power most of the time leading to
energy in-efficiency. Even with continuous stream of workload
high number of long idle periods have been observed like a node
was idle for 40 seconds or longer for 38% of the time [13]. This
also causes energy wastage. Over the lifetime of IT equipment,
the operating energy cost is comparable to the initial equipment
acquisition cost [6] and constitutes a significant part of the TCO
of a datacenter [4]. The 3 years TCO for hybrid cluster of 2600
nodes itself has been shown to be around $15.1million
analytically [24]. Hence, energy conservation of the extremely
large-scale, commodity server farms has become a priority.
There is a concerted effort to improve energy efficiency for
Internet datacenters, encompassing government reports [8],
standardization efforts [9], and research projects in both industry
and academia [18, 13, 17, 30, 29] . Considering the growing
importance of Hadoop Map-reduce, complexity of the
scheduling jobs/tasks and need for improving energy savings,
this report surveys some of the research done on Hadoop Map
Reduce scheduling algorithms and energy efficiency techniques.
It also provides some research directions in these areas. The next
sections of report are structured as follows. Section 2 provides a
detailed overview of MapReduce and Hadoop implementation.
Section 3 highlights challenges in MapReduce scheduling,
presents a taxonomy for MapReduce scheduling algorithms
studied in this report, describes the scheduling algorithms
proposed for each hierarchical level used in Hadoop Scheduling
and suggests some points for future work. Section 5 underlines
energy efficiency issues in MapReduce, provides a classification
of energy efficiency improvements techniques, describes the
proposed techniques in each category and provides pointers for
future direction.

2 MAPREDUCE PROGRAMMING MODEL

Most common huge volume data processing programs do
counting, sorting, merging etc. Such programs require to
perform first computation on each record i.e. requires to map an
operation to each record. Then combine the output of these
operations in appropriate way to get the answer, i.e. apply a
reduce operation to groups of records. Map-reduce
programming model [7] provides simple map and reduce
interfaces for users to define these operations. The programmer
implements the map() function, that will execute on each input
key/value pair to produce intermediate key/value pair output,
and the reduce() function, which takes these grouped
intermediate key/value pairs to generate the final result of the
application. MapRe-duce runtime environment takes care of

parallelizing their execution and co-ordinating their

inputs/outputs as shown in Figure 1.

Figure 1: Map-Reduce program workflow.

Some of the tricks used by MR programming model to provide
improved performance are:
Locality - MR programming model uses google file system as
the underlying file system. This file system divides each le into
64 MB chunks and stores several copies of each chunk on
different machines. The MR master takes the input file location
into consideration and
schedules map tasks accordingly to have lesser network
bandwidth utilization. First it tries to schedule a map task on
machine containing a replica of the corresponding data. If the
machine containing replica is not idle, then it looks for another
idle machine in the rack, then in same network switch area and
so on for scheduling that map task. ¤ Backup Tasks - Some tasks
may get hanged/delayed due to resource competition on the
corresponding machines. These are called straggler tasks. To
handle these, when a MR operation is nearing completion,
master schedules a copy of these on idle workers and then as
soon as any one of the copy finished task is marked as
completed. This is done to finish stragglers computation faster
and thus reduce a jobs response time.

3.OVERVIEW OF HADOOP[MAPREDUCE

SCHEDULING ALGORITHM

The key objective of Map-Reduce programming model is to
parallelize the job execution across multiple nodes for execution.
It creates multiple tasks to be executed and executes them on the
multiple machines. Multiple combinations of task and machine
are possible, scheduling policy is used to decide when and
where (on which machine) a task is to be executed. The most
common objective of scheduling is to minimize the completion
time of a parallel application by properly allocating the tasks to
the processors. Scheduling is a highly important factor , an
inappropriate scheduling of tasks would fail to exploit the true
potential of the system and o
set the gain from parallelization. The MapReduce tasks
scheduling is a NP-Hard problem as it needs to achieve a
balance between the job's performance, data locality, user

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 233

fairness/priority, resource utilization, network congestion and
reliability. If scheduling policy considers data locality for
selecting a task, it may have to compromise on the fairness as
the node available may have data of some job which is not on
head-of-line as per the fairness policy. Similarly if a task is
scheduled based on job's priority, it is not necessary that it
would have local data on the available node. This would impact
job's performance, network utilization and thus also other job's
performance. The speculative tasks, executed for improving the
reliability of a job, can cause resource wastage and hamper other
job's performance. Given the widespread utility of MapReduce
programs in data analysis, they are used for long analytical jobs,
short batch jobs, quick interactibe jobs and so on. All enterprise
data being stored in DFS, all the jobs are run on the environment.
Some data centers or users want to achieve higher performance,
some want high data locality, some want to meet SLAs for
workload mix, some want to improve resource utilization and so
on. The scheduling policies need to be designed differently for
achieving different objectives in different scenarios. The large
Map-Reduce cluster is used to execute multiple jobs of different
users. So, the scheduling policy needs to decide which user,
which job and then which task to be executed on which machine.
The users/jobs may have different priorities. The jobs would
have different complexity, characteristics and requirements. The
tasks would be of different type and have different data
locations. The available node would have some speed, some
capacity and other hardware characteristics. The scheduling
needs to consider all these. In this scenario the task scheduling
needs to be hierarchical, first select user, then his/her job, next
the task for available node. Different policies can be used at
each level. The scheduling algorithms proposed for each level
are described here. Given the different objectives that need to be
met, the multiple levels involved and the large number of
variables available in MR environment, makes job scheduling an
interesting problem for each combination.

Fig 2: MapReduce framework

3.1 FIFO scheduling algorithm
Hadoop by default uses FIFO scheduling algorithm. The main
objective of FIFO scheduler to schedule jobs based on their
priorities in first-come first serve basis. FIFO stands for first in
first out which in it Job Tracker pulls oldest job first from job
queue and it doesn't concern about priority or size of the job [5].
FIFO scheduler have many limitations such as: poor response
times for short jobs compared to large jobs, Low performance
when run multiple types of jobs and it persevere good result
only for single type of job. to address these problems round
robin scheduling algorithm was introduced.
3.2 Round Robin scheduling algorithm
In round robin technique each tasks are given extend priority
[11] .Round-robin (RR) is one of the algorithm engrossed by the
processors and network schedulers in computing.[1] As the term
is commonly used, has a head start slices are sitting each
practice in extend portions and in circular sending up the river,
handling all processes without priority (also experienced as
cyclic executive). Round-robin scheduling is easily done,
inconsequential to enforce, and starvation-free. Round-robin
scheduling can also be applied to distinctive scheduling
problems, such as data packet scheduling in computer networks.
It is an Operating System concept. The cast of the algorithm
comes from the round-robin principle known from other fields,
where each person takes a uniform share of something in turn.

3.3 Fair scheduling algorithm
Fair scheduling is a manner of assigning resources to jobs such
that all jobs gain, on average, an equal share of resources during
time [12]. If there is a single job running, the job uses the entire
cluster. When disparate jobs are submitted, free job slots are
assigned to the new jobs, so that each job can get closely the
same amount of CPU time. It lets short jobs meticulous within a
competitive time while not starving for long jobs. The
circumstance of Fair scheduling algorithm is to do a equal
distribution of compute resources among the users/jobs in the
system [17], [12]. The scheduler typically organizes jobs by
resource pool, and shares resources fairly among these pools. By
default, there is a separate pool for each user. The Fair
Scheduler can impose the number of concurrent running jobs via
user and per pool. Also, it can inflict the number of concurrent
running tasks via pool. The traditional algorithms have high data
transfer and the execution time of jobs. Tao et al. [13]
introduced an improved FAIR scheduling algorithm, which
takes into account job characteristics and data locality, which
decreases both data transfer and the execution time of jobs. Thus,
Fair scheduling can cover some limitation of FIFO such as: it
can works abundantly in both small and large clusters and less
complex. Fair scheduling algorithm does not consider the job
weight of each node, which this is an important disadvantage of
it.

3.4 Capacity scheduling algorithm
The study of capacity scheduling algorithm is very redolent to
fair scheduling. But used of queues instead of pool. Each queue
is allocated to an organization and resources are divided
bounded by these queues. Scilicet, Capacity scheduling
algorithm puts jobs into multiple queues in accordance with the
conditions, and allocates indisputable system capacity for each
queue. If a queue has heavy load, it seeks unallocated resources,
then makes redundant resources allocated evenly to each job
[13], [6]. For maximizing resource utilization, it empowers re-

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 234

allocation of resources of free queue to queues via their full
capacity. When jobs arrive in that queue, running tasks are
completed and resources are given back to original queue. It also
empowers priority based scheduling of jobs in an organization
queue [3]. The capacity scheduler empowers users or
organization to simulate a separate MapReduce cluster with
FIFO scheduling for each user or organization [4]. Generally,
capacity scheduling algorithm labels the FIFO’s limitation such
as the low utilization rate of resources.

3.5 Weighted Round Robin scheduling algorithm
The weighted round-robin scheduling is introduced to better use
servers by the whole of different processing capacities. Each
server boot be given away a saddle, an integer worth that
indicates the processing capacity. Servers by the whole of higher
weights feed new connections willingly than those by all of less
weights, and servers with higher weights win more connections
than those by all of less weights and servers with admit of
comparison with weights earn equal connections. The Weighted
Round-Robin (WRR) Scheduling algorithm [14] is based on the
round-robin and advantage scheduling algorithms. The WRR
retains the body of round-robin in eliminating hunger and by the
same token integrates pride of place scheduling. WRR is a pre-
emptive algorithm that will realize several techniques. WRR
will fit a long in the tooth style, bend to a well- known will the
anticipate slice for each fashion contained in each “weight”, and
furthermore reorder the fashion chain according to “weight”.
The WRR by the same token will achieve the work of genius of
aging. Aging is when a process, that renew the trade queue will
be subject to a “bump” in weight. In the status of WRR the
algorithm will pick up the load of that engagement in activity
application by a figure of one for separately three realized job
queue cycles it is processed.
3.6 Improved Weighted Round Robin scheduling algorithm
The Improved Round Robin (IRR) scheduling algorithm works
similar to Round Robin (RR) with a small improvement [15].
IRR selects the first process from the ready queue and assign the
resource to it for a time interval of up to 1 time quantum. After
realization of the process’s time quantum, it calculates the
remaining burst time of the on-going process. If the remaining
burst time of the on-going process is lesser than 1 time quantum,
the processor further allocated to the on-going process for
remaining burst time. In this case this process will finish
execution and it will be moved from the ready queue. The
scheduler formerly proceeds to the next process in the ready
queue. Otherwise, if the remaining burst time of the on-going
process is greater than 1 time quantum, the process will be
placed at the tail of the ready queue. The scheduler will formerly
select the next process in the ready queue.
3.7 Hybrid scheduling algorithm
Nguyen et al. [16] proposed a Hybrid Scheduler algorithm based
on dynamic priority in order to reduce the delay for variable size
concurrent jobs, and recuperate the order of jobs to uphold data
locality. Also it provides a user-defined job level value for QoS.
This algorithm is designed for data intensive workloads and tries
to uphold data locality during job execution [11].The average
response time for the workloads is approximately 2.1x faster
over the Hadoop Fairs with a standard deviation of 1.4x. It
achieves this improved response time by means of relaxing the
strict proportional fairness with a simple exponential policy
technique. This algorithm is a fast and flexible scheduler that
improves response time for multi-user Hadoop environments.
3.8 Self-adaptive Reduce scheduling (SARS) algorithm

Tang et al. [3] intended an optimal reduce scheduling procedure
for reduce tasks start time in Hadoop, which called SARS. This
procedure works by slow down the reduce processes. The
reduce tasks are scheduled, when not all of the map tasks have
finished. The purpose of the scheduling algorithm, SARS is to
shorten the copy duration of the reduce process, decrease the
task complete time, and save the reduce slots resources. Due to
The experimental results in [3], a time when comparing SARS
with the FIFO, the reduce completion time is decreased sharply.
And it is further proved that the average response time are
diminished 11% to 29% when SARS algorithms are applied
traditional job scheduling algorithm: FIFO, Fair Scheduler and
Capacity Scheduler. The limitation of this algorithm is that only
focus on reduce process.

4. PROPOSED METHODOLOGY
The proposed Longest Approximate Time to End (LATE)
algorithm is based on three principles: prioritize tasks to
speculate, select fast nodes to run on, and cap speculative tasks
to prevent thrashing. To realize these principles LATE algorithm
uses following parameters: SlowNodeThreshold - This is the cap
to avoid scheduling on slow nodes. Scores for all succeeded and
in-progress tasks on the node are compared to this value.
SpecultiveCap - It is the cap on number of speculative tasks that
can be running at once. SlowTaskThreshold :This is a progress
rate threshold to determine if a task is slow enough to be
speculated upon. This prevents needless speculation when only
fast tasks are running. Progress Rate of a task is given by
ProgressScore=ExecutionTime. The time left parameter for a
task is estimated based on the Progress Score provided by
Hadoop, as (1 –ProgressScore)/ProgressRate.
The LATE algorithm works as shown in Algorithm 1.

Algorithm 1 Longest Approximate Time to End (LATE)
Scheduling Algorithm
1: a node N asks for a new task
2: if number of running speculative tasks <SpeculativeCap then
3: if nodes total progress <SlowNodeThreshold then
4: ignore the request
5: else
6: rank currently running tasks that are not currently being
speculated by estimated time left
7: repeat
8: select next task T from ranked list
9: if progress rate of T <SlowTaskThreshold then
10: Launch a copy of T on node N
11: exit
12: end if
13: until while ranked list has tasks
14: end if
15: end if

Authors have done exhaustive experiments for LATE algorithm
in EC2 heterogeneous cluster. One experiment showed that in a
cluster with non-faulty nodes experiment (without stragglers),
LATE finished jobs 27% faster than Hadoops native scheduler
and 31% faster than no speculation. LATE provides gains in
heterogeneous environments even if there are no faulty nodes.
For Sort with stragglers, on average, LATE finished jobs 58%
faster than Hadoops native scheduler and 220% faster than
Hadoop with speculative execution disabled. The comparison of
worst, best and average-case performance of LATE against
Hadoops scheduler and no speculation for runs without and with
stragglers are shown below in Figure 6. Sensitivity analysis to

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 235

SpeculativeCap done in test environment showed that response
time drops sharply at SpeculativeCap = 20%, after which it stays
low. And a higher threshold value is undesirable because LATE
wastes more time on excess speculation. Experiments for
Sensitivity to SlowTaskThreshold (percentile of progress rate
below which a task must lie to be considered for speculation)
show that small threshold values harmfully limit the number of
speculative tasks, values past 25% all work well. Sensitivity
analysis to SlowNodeThreshold (percentile of speed below
which a node will be considered too slow for LATE to launch
speculative tasks on) show that as long as SlowNodeThreshold
is higher than the fraction of nodes that are extremely slow or
faulty, LATE performs well.

Fig 3: LATE Running time

Fig 4:Energy savings at different values of

mapreduce ratio

5.CONCLUSION

In this paper, we have evaluated the performance of our
approach LATE (Longest Approximate Time to End)
scheduling algorithm which improves the performance of
hadoop. It works better than existing map reduce scheduling

algorithms by taking less amount of computation and gives high
accuracy. The results demonstrate that the algorithm is both
more accurate and efficient in comparison to other algorithms in
literature. In the future we have planned to further improve the
efficiency by reducing the execution time.

6.REFERENCES

[1] Amazon Elastic Compute Cloud (EC2).
http://aws.amazon.com/ec2/.
[2] The Apache Hadoop Project. http://www.hadoop.org.
[3] E. Baldeschwieler.
http://developer.yahoo.com/events/hadoopsummit2010/agenda.h
tml.
[4] C. Belady. In the data center, power and cooling costs more
than the IT equipment it supports. Electronics Cooling Magazine.
Feb. 2010.
[5] B. He, W. Fang, N. K. Govindaraju, Q. Luo, and T. Wang.
Mars: A MapReduce framework on graphics processors. In Proc.
17th Int'l Conference on Parallel Architectures and Compilation
Techniques, pp. 260-269, 2008.
[6] Y. Chen, A. Ganapathi, A. Fox, R. H. Katz, and D. A.
Patterson. Statistical workloads for energy ecient mapreduce.
Technical report, UC, Berkeley, 2010.
[7] J. Dean and S. Ghemawat. MapReduce: Simplied Data
Processing on Large Clusters. In Communications of the ACM,
51 (1): 107-113, 2008.
[8] U.S. Environmental Protection Agency. Report to Congress
on Server and Data Center Energy Eciency, Public Law 109-431,
2007.
[9] The Green Grid. The Green Grid Data Center Power Eciency
Metrics: PUE and DciE. 2007.
[10] D. Gottfrid. Self-service, Prorated Super Computing Fun!.
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-
super-
computing-fun/.
[11] Applications powered by Hadoop.
http://wiki.apache.org/hadoop/PoweredBy.
[12] J. Hamilton. Overall Data Center Costs. In Perspectives.
http://perspectives.mvdirona.com/. September 18, 2010.
[13] Jacob Leverich, Christos Kozyrakis . On the Energy
(In)eciency of Hadoop Clusters. In ACM SIGOPS Operating
Systems Review. Volume 44 Issue 1. Pages 61-65. 2010.
[14] J Jeery Hanson. An introduction to the Hadoop Distributed
File System. IBM DeveloperWorks,
2011.http://www.ibm.com/developerworks/web/library/wa-
introhdfs/index.html
[15] Jord`a Polo, David de Nadal, David Carrera, Yolanda
Becerra, Vicenc Beltran, Jordi Torres and Eduard Ayguade.
Adaptive Task Scheduling for MultiJob MapReduce
Environments. In Proceedings of Jornadas de Paralelismo
conference (JP), pp 96-101A Corua. 2009.
[16] L. A. Barroso and U. H lzle. The Case for Energy-
Proportional Computing. IEEE Computer, Vol 40 (no. 12),
pages 33-37. 2007.
[17] Kamal Kc and Kemafor Anyanwu. Scheduling hadoop jobs
to meet deadlines. In Proceedings of the IEEE Second
International Conference on Cloud Computing Technology and
Science. CLOUDCOM '10. pages 388-392. IEEE Computer
Society, 2010.
[18] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy Katz, Ion Stoica. Improving MapReduce performance in

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 236

heterogeneous environments. In Proceedings of the 8th USENIX
conference on Operating systems design and implementation,
p.29-42, December, 2008.
[19] Mohammad Hammoud, M. Suhail Rehman, and Majd F.
Sakr . Center of Gravity reduce task scheduling to lower Map-
Reduce network trac. In Proceedings of IEEE 5th International
Conference on Cloud Computing (IEEE Cloud). Pages 49-58,
2012.
[20] Nan Zhu, Lei Rao, Xue Liu , Jie Liu, Haibin Guan. Taming
Power Peaks in MapReduce Clusters. In Proceedings of the
ACM SIGCOMM conference. Pages 416-417, 2011.
[21] Nedeljko Vasic, Martin Barisits , Vincent Salzgeber and
Dejan Kostic . Making Cluster Applications Energy-Aware. In
ACM Proceedings of the 1st workshop on Automated control
for datacenters and clouds (ACDC). Pages 37-42, 2009.
[22] Nezih Yigitbasi , Kushal Datta, Nilesh Jain, and Theodore
Willke . Energy E-ffcient Scheduling of MapReduce Workloads
on Heterogeneous Clusters. Proceed-ings of the 2nd
International Workshop on Green Computing Middleware.
Pages
1-6, 2011.
[23] Nitesh Maheshwari, Radheshyam Nanduri, Vasudeva
Varma . Dynamic Energy Efficient Data Placement and Cluster
Reconguration Algorithm for MapReduce Framework. Future
Generation Computer System (FGCS) Journal. Vol. 28, No.
1. Pages 119-127. 2012.
[24] Rini T. Kaushik , Milind Bhandarkar . GreenHDFS:
Towards An Energy-
Conserving, Storage-Ecient, Hybrid Hadoop Compute Cluster.
In Proceedings of
the International conference on Power aware computing and
systems (HotPower).
Pages 1-9. 2010.
[25] Presentations by S. Schlosser and J. Lin at Hadoop Summit.
2008.
tinyurl.com/4a6lza
[26] A. Thusoo et al. Hive - a warehousing solution over a map-
reduce framework.
PVLDB, 2(2):16261629, 2009.
[27] Tom Wheeler. Hadoop in 45 minutes or less. OCI 2009.
[28] Willis Lang, Jignesh M. Patel . Energy Management for
MapReduce Clusters. In
Proceedings of the VLDB Endowment. Volume 3 Issue 1-2.
Pages 129-139. 2010.
[29] Yanpei Chen, Sara Alspaugh, Dhruba Borthakur , Randy
Katz. Energy Eciency
for Large-Scale MapReduce Workloads with Signicant
Interactive Analysis. In
Proceedings of the 7th ACM european conference on Computer
Systems (Eurosys).
Pages 43-56, 2012.
[30] Zhenhua Guo, Georey Fox, Mo Zhou, Yang Ruan.
Improving Resource Utilization in MapReduce. Indiana
University Report. May 2012.

