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Abstract— MapReduce has become far and wide for processing 
large data volume jobs. As the number and deviation of jobs to 
be executed across different clusters are increasing, so  it is the 
complexity of scheduling them efficiently to meet required 
objectives of performance. This paper presents a LATE 
MapReduce scheduling algorithms expected for such 
complicated scenarios. A taxonomy is furnished for  Map-
reduce algorithms based on their runtime nature. The algorithms 
considered for each hierarchical level of MapReduce scheduling 
are described in detail. Some pointers for future research to  
improve the efficiency some scheduling techniques are provided. 
Another aspect of MapReduce is that the size of their clusters is 
regularly in hundreds and thousands, at the same time it is used 
for processing infrequent batch and interactive tasks  in parallel 
across these machines. Thus there is a need to detect at energy 
efficiency of MapReduce clusters. A survey on some of the 
algorithm is proposed to improve the  energy efficiency of 
MapReduce . The studied techniques have been classified based 
upon the MapReduce element they work-on. Details of the  
technique in each category is provided. Few suggestions for 
future research are given based on the gaps observed in these 
work. 

Keywords— MapReduce, Scheduling, LATE, heterogeneous, 

hadoop, DataNode, NameNode 
1 . INTRODUCTION 
With the current trend in increased use of World Wide Web in 
everything, lot of data is generated and analyzed. Web search 
engines and social networking sites discover and segregate 
every user action on their sites to recover site design, recognize 
spam and malfeasance, and advertising opportunities. Facebook 
collects 15 Tera Bytes of data each second into its Peta Byte 
scale data warehouse [26]. Powerful telescopes in astronomy, 
genome sequencers in biology, and particle accelerators in 
physics are churning out huge amounts of data for   scientists. 
Key scientific breakthroughs are proposed to determine 
computational experiment of such data. Many basic and applied 
science disciplines rapidly have computational areas, for 
example computational economics,   computational biology, and 
computational journalism. Given these many use cases, there is 
a need to preserve improving the BIG Data management 
techniques. The processing of this can be best done by 
Distributed computing and parallel processing mechanisms. 

Map-reduce is one of the most popularly used such technique. 
MapReduce breaks a computation into little tasks that run in 
parallel on multiple machines, and scales easily to indeed large 
clusters of inexpensive commodity hcomputers. MapReduce is 
becoming a overall programming model. The best example is 
Google, which uses its MapReduce context to process 20 
petabytes of data per day [7]. Other instance are of Mars [5] that 
harnessed computer graphics processors power for MapReduce. 
Hadoop, an open-source MapReduce implementation, has 
extensively been adopted by industries such as Facebook, and 
academia. Hadoop [2] is being deployed in many cloud 
platforms also. Example, Amazon has equipped their software 
stack with Hadoop to facilitate continually large-scale data 
applications on Amazon Elastic Cloud Computing [1]. The New 
York Times rented 100 virtual machines for a day to shift 11 
million scanned articles to PDFs [10]. In addition, researchers 
from University of Maryland and PARC are starting to consider 
Hadoop for seismic simulation, natural language processing, and  
web data mining [11, 25]. Due to its great adoption, the attitude 
of Hadoop in particular (and MapReduce in general) has become 
an consistent research topic. Each MapReduce application is run 
as a job that is submitted to the MapReduce runtime. Each job is 
split into a large number of Map and Reduce tasks before being 
started. The runtime is in charge of running tasks for every job 
until they are completed. The tasks are actually executed in any 
of the slave nodes that the MapReduce cluster comprises of. In 
particular, the task scheduler is responsible for deciding what 
tasks are run at each moment in time, as well as what slave node 
will host the task execution. One basic principle used is: moving 
computation towards data is cheaper than moving data towards 
computation. So, Hadoop attempts to schedule map tasks in the 
vicinity of input chunks seeking reduced network track in an 
environment characterized by scarcity in network bandwidth. In 
a multi-job environment, the task scheduler has the 
responsibility to ensure that performance is achieved for all jobs. 
Initially MapReduce was used for batch data processing,but  it is 
now being used in shared,  Multi-user environments where 
different type of jobs with different priorities need to be 
executed: from small, almost interactive executions, to very long 
programs that can take hours to complete. In these new and 
changing scenarios, task scheduling is becoming even more 
relevant as it is responsible for deciding what tasks are run, and 
thus the performance delivered by each application to each user. 
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The US EPA report [8] has indicated that the power 
consumption of data centers is growing at a fast rate. It states 
that the energy usage at datacenters doubled between 2000 and 
2006 which is equivalent to the electricity consumed by 5.8 
million average U.S household. The report predicted that their 
power consumption will double again in 2011 to go up to 100 
billion kilowatt hours/year which would be worth of $7.4 
billion/year. This indicates the increasing operational costs for 
the enterprise data centers. The map-reduce clusters form a big 
part of data centers contributing to these huge energy expenses. 
The sheer scale of the Hadoop MR clusters make it critical to 
improve their operating eciency, including energy. Yahoo!s 
datacenters process 170 petabytes of data on cluster of 38000 
servers [3]. Such large clusters are created to support peak 
workloads. It was observed that Facebook workload had high 
peak-to-average ratios [29] then the large clusters remain under 
utilized consuming peak power most of the time leading to 
energy in-efficiency. Even with continuous stream of workload 
high number of long idle periods have been observed like a node 
was idle for 40 seconds or longer for 38% of the time [13]. This 
also causes energy wastage. Over the lifetime of IT equipment, 
the operating energy cost is comparable to the initial equipment 
acquisition cost [6] and constitutes a significant part of the TCO 
of a datacenter [4]. The 3 years TCO for hybrid cluster of 2600 
nodes itself has been shown to be around $15.1million 
analytically [24]. Hence, energy conservation of the extremely 
large-scale, commodity server farms has become a priority. 
There is a concerted effort to improve energy efficiency for 
Internet datacenters, encompassing government reports [8], 
standardization efforts [9], and research projects in both industry 
and academia  [18, 13, 17, 30, 29] . Considering the growing 
importance of Hadoop Map-reduce, complexity of the 
scheduling jobs/tasks and need for improving energy savings, 
this report surveys some of the research done on Hadoop Map 
Reduce scheduling algorithms and energy efficiency techniques. 
It also provides some research directions in these areas. The next 
sections of report are structured as follows. Section 2 provides a 
detailed overview of  MapReduce and Hadoop implementation. 
Section 3 highlights challenges in MapReduce scheduling, 
presents a taxonomy for MapReduce scheduling algorithms 
studied in this report, describes the scheduling algorithms 
proposed for each hierarchical level used in Hadoop Scheduling 
and suggests some points for future work. Section 5 underlines 
energy efficiency issues in MapReduce, provides a classification 
of energy efficiency improvements techniques, describes the 
proposed techniques in each category and provides pointers for 
future direction. 
 
2 MAPREDUCE PROGRAMMING MODEL 

 

Most common huge volume data processing programs do 
counting, sorting, merging etc. Such programs require to 
perform first  computation on each record i.e. requires to map an 
operation to each record. Then combine the output of these 
operations in appropriate way to get the answer, i.e. apply a 
reduce operation to groups of records. Map-reduce 
programming model [7] provides simple map and reduce 
interfaces for users to define these operations. The programmer 
implements the map() function, that will execute on each input 
key/value pair to produce intermediate key/value pair output, 
and the reduce() function, which takes these grouped 
intermediate key/value pairs to generate the final result of the 
application. MapRe-duce runtime environment takes care of 

parallelizing their execution and co-ordinating their 

inputs/outputs as shown in Figure 1. 
 

 
 

 
 

Figure 1: Map-Reduce program workflow. 
 

Some of the tricks used by MR programming model to provide 
improved performance are: 
Locality - MR programming model uses google file system as 
the underlying file system. This file system divides each le into 
64 MB chunks and stores several copies of each chunk on 
different machines. The MR master takes the input file location 
into consideration and 
schedules map tasks accordingly to have lesser network 
bandwidth utilization. First it tries to schedule a map task on 
machine containing a replica of the corresponding data. If the 
machine containing replica is not idle, then it looks for another 
idle machine in the rack, then in same network switch area and 
so on for scheduling that map task. ¤ Backup Tasks - Some tasks 
may get hanged/delayed due to resource competition on the 
corresponding machines. These are called straggler tasks. To 
handle these, when a MR operation is nearing completion, 
master schedules a copy of these on idle workers and then as 
soon as any one of the copy finished task is marked as 
completed. This is done to finish stragglers computation faster 
and thus reduce a jobs response time. 

 
3.OVERVIEW OF HADOOP[ MAPREDUCE 

SCHEDULING ALGORITHM 

 
The key objective of Map-Reduce programming model is to 
parallelize the job execution across multiple nodes for execution. 
It creates multiple tasks to be executed and executes them on the 
multiple machines. Multiple combinations of task and machine 
are possible, scheduling policy is used to decide when and 
where (on which machine) a task is to be executed. The most 
common objective of scheduling is to minimize the completion 
time of a parallel application by properly allocating the tasks to 
the processors. Scheduling is a highly important factor , an 
inappropriate scheduling of tasks would fail to exploit the true 
potential of the system and o 
set the gain from parallelization. The MapReduce tasks 
scheduling is a NP-Hard problem as it needs to achieve a 
balance between the job's performance, data locality, user 
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fairness/priority, resource utilization, network congestion and 
reliability. If scheduling policy considers data locality for 
selecting a task, it may have to compromise on the fairness as 
the node available may have data of some job which is not on 
head-of-line as per the fairness policy. Similarly if a task is 
scheduled based on job's priority, it is not necessary that it 
would have local data on the available node. This would impact 
job's performance, network utilization and thus also other job's 
performance. The speculative tasks, executed for improving the 
reliability of a job, can cause resource wastage and hamper other 
job's performance. Given the widespread utility of MapReduce 
programs in data analysis, they are used for long analytical jobs, 
short batch jobs, quick interactibe jobs and so on. All enterprise 
data being stored in DFS, all the jobs are run on the environment. 
Some data centers or users want to achieve higher performance, 
some want high data locality, some want to meet SLAs for 
workload mix, some want to improve resource utilization and so 
on. The scheduling policies need to be designed differently for 
achieving different objectives in different scenarios. The large 
Map-Reduce cluster is used to execute multiple jobs of different 
users. So, the scheduling policy needs to decide which user, 
which job and then which task to be executed on which machine. 
The users/jobs may have different priorities. The jobs would 
have different complexity, characteristics and requirements. The 
tasks would be of different type and have different data 
locations. The available node would have some speed, some 
capacity and other hardware characteristics. The scheduling 
needs to consider all these. In this scenario the task scheduling 
needs to be hierarchical, first select user, then his/her job, next 
the task for available node. Different policies can be used at 
each level. The scheduling algorithms proposed for each level 
are described here. Given the different objectives that need to be 
met, the multiple levels involved and the large number of 
variables available in MR environment, makes job scheduling an 
interesting problem for each combination. 

 

 

Fig 2: MapReduce framework 
 
 

3.1 FIFO scheduling algorithm  
Hadoop by default uses FIFO scheduling algorithm. The main 
objective of FIFO scheduler to schedule jobs based on their 
priorities in first-come first serve basis. FIFO stands for first in 
first out which in it Job Tracker pulls oldest job first from job 
queue and it doesn't concern about priority or size of the job [5]. 
FIFO scheduler have many limitations such as: poor response 
times for short jobs compared to large jobs, Low performance 
when run multiple types of jobs and it persevere good result 
only for single type of job. to address these problems round 
robin scheduling algorithm was introduced.  
3.2 Round Robin scheduling algorithm  
In round robin technique each tasks are given extend priority 
[11] .Round-robin (RR) is one of the algorithm engrossed by the 
processors and network schedulers in computing.[1] As the term 
is commonly used, has a head start slices are sitting each 
practice in extend portions and in circular sending up the river, 
handling all processes without priority (also experienced as 
cyclic executive). Round-robin scheduling is easily done, 
inconsequential to enforce, and starvation-free. Round-robin 
scheduling can also be applied to distinctive scheduling 
problems, such as data packet scheduling in computer networks. 
It is an Operating System concept. The cast of the algorithm 
comes from the round-robin principle known from other fields, 
where each person takes a uniform share of something in turn.  

3.3 Fair scheduling algorithm  
Fair scheduling is a manner of assigning resources to jobs such 
that all jobs gain, on average, an equal share of resources during 
time [12]. If there is a single job running, the job uses the entire 
cluster. When disparate jobs are submitted, free job slots are 
assigned to the new jobs, so that each job can get closely the 
same amount of CPU time. It lets short jobs meticulous within a 
competitive time while not starving for long jobs. The 
circumstance of Fair scheduling algorithm is to do a equal 
distribution of compute resources among the users/jobs in the 
system [17], [12]. The scheduler typically organizes jobs by 
resource pool, and shares resources fairly among these pools. By 
default, there is a separate pool for each user. The Fair 
Scheduler can impose the number of concurrent running jobs via 
user and per pool. Also, it can inflict the number of concurrent 
running tasks via pool. The traditional algorithms have high data 
transfer and the execution time of jobs. Tao et al. [13] 
introduced an improved FAIR scheduling algorithm, which 
takes into account job characteristics and data locality, which 
decreases both data transfer and the execution time of jobs. Thus, 
Fair scheduling can cover some limitation of FIFO such as: it 
can works abundantly in both small and large clusters and less 
complex. Fair scheduling algorithm does not consider the job 
weight of each node, which this is an important disadvantage of 
it.  

3.4 Capacity scheduling algorithm  
The study of capacity scheduling algorithm is very redolent to 
fair scheduling. But used of queues instead of pool. Each queue 
is allocated to an organization and resources are divided 
bounded by these queues. Scilicet, Capacity scheduling 
algorithm puts jobs into multiple queues in accordance with the 
conditions, and allocates indisputable system capacity for each 
queue. If a queue has heavy load, it seeks unallocated resources, 
then makes redundant resources allocated evenly to each job 
[13], [6]. For maximizing resource utilization, it empowers re-
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allocation of resources of free queue to queues via their full 
capacity. When jobs arrive in that queue, running tasks are 
completed and resources are given back to original queue. It also 
empowers priority based scheduling of jobs in an organization 
queue [3]. The capacity scheduler empowers users or 
organization to simulate a separate MapReduce cluster with 
FIFO scheduling for each user or organization [4]. Generally, 
capacity scheduling algorithm labels the FIFO’s limitation such 
as the low utilization rate of resources.  

3.5 Weighted Round Robin scheduling algorithm  
The weighted round-robin scheduling is introduced to better use 
servers by the whole of different processing capacities. Each 
server boot be given away a saddle, an integer worth that 
indicates the processing capacity. Servers by the whole of higher 
weights feed new connections willingly than those by all of less 
weights, and servers with higher weights win more connections 
than those by all of less weights and servers with admit of 
comparison with weights earn equal connections. The Weighted 
Round-Robin (WRR) Scheduling algorithm [14] is based on the 
round-robin and advantage scheduling algorithms. The WRR 
retains the body of round-robin in eliminating hunger and by the 
same token integrates pride of place scheduling. WRR is a pre-
emptive algorithm that will realize several techniques. WRR 
will fit a long in the tooth style, bend to a well- known will the 
anticipate slice for each fashion contained in each “weight”, and 
furthermore reorder the fashion chain according to “weight”. 
The WRR by the same token will achieve the work of genius of 
aging. Aging is when a process, that renew the trade queue will 
be subject to a “bump” in weight. In the status of WRR the 
algorithm will pick up the load of that engagement in activity 
application by a figure of one for separately three realized job 
queue cycles it is processed.  
3.6 Improved Weighted Round Robin scheduling algorithm  
The Improved Round Robin (IRR) scheduling algorithm works 
similar to Round Robin (RR) with a small improvement [15]. 
IRR selects the first process from the ready queue and assign the 
resource to it for a time interval of up to 1 time quantum. After 
realization of the process’s time quantum, it calculates the 
remaining burst time of the on-going process. If the remaining 
burst time of the on-going process is lesser than 1 time quantum, 
the processor further allocated to the on-going process for 
remaining burst time. In this case this process will finish 
execution and it will be moved from the ready queue. The 
scheduler formerly proceeds to the next process in the ready 
queue. Otherwise, if the remaining burst time of the on-going 
process is greater than 1 time quantum, the process will be 
placed at the tail of the ready queue. The scheduler will formerly 
select the next process in the ready queue.  
3.7 Hybrid scheduling algorithm  
Nguyen et al. [16] proposed a Hybrid Scheduler algorithm based 
on dynamic priority in order to reduce the delay for variable size 
concurrent jobs, and recuperate the order of jobs to uphold data 
locality. Also it provides a user-defined job level value for QoS. 
This algorithm is designed for data intensive workloads and tries 
to uphold data locality during job execution [11].The average 
response time for the workloads is approximately 2.1x faster 
over the Hadoop Fairs with a standard deviation of 1.4x. It 
achieves this improved response time by means of relaxing the 
strict proportional fairness with a simple exponential policy 
technique. This algorithm is a fast and flexible scheduler that 
improves response time for multi-user Hadoop environments.  
3.8 Self-adaptive Reduce scheduling (SARS) algorithm  

Tang et al. [3] intended an optimal reduce scheduling procedure 
for reduce tasks start time in Hadoop, which called SARS. This 
procedure works by slow down the reduce processes. The 
reduce tasks are scheduled, when not all of the map tasks have 
finished. The purpose of the scheduling algorithm, SARS is to 
shorten the copy duration of the reduce process, decrease the 
task complete time, and save the reduce slots resources. Due to 
The experimental results in [3], a time when comparing SARS 
with the FIFO, the reduce completion time is decreased sharply. 
And it is further proved that the average response time are 
diminished 11% to 29% when SARS algorithms are applied 
traditional job scheduling algorithm: FIFO, Fair Scheduler and 
Capacity Scheduler. The limitation of this algorithm is that only 
focus on reduce process.  

4. PROPOSED METHODOLOGY 
The proposed Longest Approximate Time to End (LATE) 
algorithm is based on three principles: prioritize tasks to 
speculate, select fast nodes to run on, and cap speculative tasks 
to prevent thrashing. To realize these principles LATE algorithm 
uses following parameters: SlowNodeThreshold - This is the cap 
to avoid scheduling on slow nodes. Scores for all succeeded and 
in-progress tasks on the node are compared to this value. 
SpecultiveCap - It is the cap on number of speculative tasks that 
can be running at once. SlowTaskThreshold :This is a progress 
rate threshold to determine if a task is slow enough to be 
speculated upon. This prevents needless speculation when only 
fast tasks are running. Progress Rate of a task is given by 
ProgressScore=ExecutionTime. The time left parameter for a 
task is estimated based on the Progress Score provided by 
Hadoop, as (1 –ProgressScore)/ProgressRate. 
The LATE algorithm works as shown in Algorithm 1. 
 
Algorithm 1 Longest Approximate Time to End (LATE) 
Scheduling Algorithm 
1: a node N asks for a new task 
2: if number of running speculative tasks <SpeculativeCap then 
3: if nodes total progress <SlowNodeThreshold then 
4: ignore the request 
5: else 
6: rank currently running tasks that are not currently being 
speculated by estimated time left 
7: repeat 
8: select next task T from ranked list 
9: if progress rate of T <SlowTaskThreshold then 
10: Launch a copy of T on node N 
11: exit 
12: end if 
13: until while ranked list has tasks 
14: end if 
15: end if 
 
Authors have done exhaustive experiments for LATE algorithm 
in EC2 heterogeneous cluster. One experiment showed that in a 
cluster with non-faulty nodes experiment (without stragglers), 
LATE finished jobs 27% faster than Hadoops native scheduler 
and 31% faster than no speculation. LATE provides gains in 
heterogeneous environments even if there are no faulty nodes. 
For Sort with stragglers, on average, LATE finished jobs 58% 
faster than Hadoops native scheduler and 220% faster than 
Hadoop with speculative execution disabled. The comparison of 
worst, best and average-case performance of LATE against 
Hadoops scheduler and no speculation for runs without and with 
stragglers are shown below in Figure 6. Sensitivity analysis to 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com                        
                             
            International Journal of Advanced Research in Management, Architecture, Technology  

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016 

All Rights Reserved © 2016 IJARMATE                                                 235 
 

SpeculativeCap done in test environment showed that response 
time drops sharply at SpeculativeCap = 20%, after which it stays 
low. And a higher threshold value is undesirable because LATE 
wastes more time on excess speculation. Experiments for 
Sensitivity to SlowTaskThreshold (percentile of progress rate 
below which a task must lie to be considered for speculation) 
show that small threshold values harmfully limit the number of 
speculative tasks, values past 25% all work well. Sensitivity 
analysis to SlowNodeThreshold (percentile of speed below 
which a node will be considered too slow for LATE to launch 
speculative tasks on) show that as long as SlowNodeThreshold 
is higher than the fraction of nodes that are extremely slow or 
faulty, LATE performs well. 
 
 

 

Fig 3: LATE Running time 
 
 
 
 

 
 

Fig 4:Energy savings at different values of 

mapreduce ratio  
 

5.CONCLUSION 

 
In this paper, we have evaluated the performance of our 
approach LATE (Longest Approximate Time to End ) 
scheduling algorithm which improves the performance of 
hadoop. It works better than existing map reduce scheduling 

algorithms by taking less amount of computation and gives high 
accuracy. The results demonstrate that the algorithm is both 
more accurate and efficient in comparison to other algorithms in 
literature. In the future we have planned to further improve the 
efficiency by reducing the execution time.  
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