
ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 178

EFFICIENT APPROACH FOR DATA RETRIEVABILITY

ON CLOUD STORAGE SYSTEM

MAHALAKSHMI.S
1
,PAVITHRA.R

2
,SELVARANI.R

3
,THILAGAM.J

4

1,2,3,4
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,MAGNA COLLEGE OF

ENGINEERING

ABSTRACT-Cloud storage is a model of data

storage in which the digital data is stored in logical

pools. It allows users to store their data in a remote

server to get rid of expensive local storage and

management costs and then access data of interest

anytime anywhere. We propose an enhanced

dynamic proof of retrievability scheme supporting

public audit ability and communication-efficient

recovery from data corruptions. We split up the

data into small data blocks and encode that data

block using network coding. To eliminate the

communication overhead for small data corruptions

within a server, each encoded data block is further

encoded. Based on the encoded data blocks, we

utilize tree structure to enforce the data sequence for

dynamic operations, preventing the cloud service

provider from manipulating data block to pass the

integrity check in the dynamic scenario. We also

effective analyze with our encrypted Base64 method

for the effectiveness of the proposed construction in

defending against pollution attacks during data

retrievability.

I.INTRODUCTION

Cloud Computing,” to put it simply, means “Internet

Computing.” The Internet is commonly visualized as

clouds; hence the term “cloud computing” for

computation done through the Internet. With Cloud

Computing users can access database resources via the

Internet from anywhere, for as long as they need,

without worrying about any maintenance or

management of actual resources. Besides, databases in

cloud are very dynamic and scalable. Cloud computing

is unlike grid computing, utility computing, or

autonomic computing. In fact, it is a very independent

platform in terms of computing. The best example of

cloud computing is Google Apps where any application

can be accessed using a browser and it can be deployed

on thousands of computer through the Internet.A cloud

is just a combination of hardware (computer, other

devices), networks, storage, services and interfaces that

helps in delivering computing as a service. It has mainly

three users.

II.LITERATURE SURVEY
Remote data integrity checks for public cloud storage

have been investigated in various systems and security

models [6]–[10]. Considering the large size of the

outsourced data and the owner’s constrained resource

capability, the cost to audit data integrity in the cloud

environment could be formidable and expensive to the

data owner.]. [6] was the first to introduce the “Provable

Data Possession (PDP)” model and proposed an

integrity verification scheme for static data using

RSAbased homomorphic authenticators. At the same

time, Juels et al. [8] proposed the “Proof of

Retrievability (PoR)” model which is stronger than the

PDP model in the sense that the system additionally

guarantees the retrievability of outsourced data.

Specifically, the authors proposed a spot-checking

approach to guarantee possession of data files and

employed error-correcting coding technologies to

ensure the retrievability. A limitation of their scheme is

that the number of challenges is constrained. Shacham

et al. [10] utilized the homomorphic signatures to

design an improved PoR scheme. Although the scheme

supported public auditability of static data using

publicly verifiable homomorphic authenticators, how to

perform data recovery was not explicitly discussed. To

achieve strong data retrievability, Bowers et al. [9]

developed a PDP scheme with full data dynamics using

skip list. Meantime, Wang et al. [7] proposed a scheme

supporting public auditability and data dynamics using

BLS based signatures and Merkle hash tree (MHT).

Zhu et al.

2.1. PROBLEMS IN EXISTING SYSTEM
In existing system, while uploading, the entire data

were uploaded as single block, so we couldn’t find the

particular data loss.Do not support efficient data

dynamics and/or suffer from security vulnerabilities

when involving dynamic data operations. Here they

haven’t used any network codes or erasure codes hence

they faced many difficulties while finding the

redundancies.No file audit report and file audit

delegation. Data corruption caused by server hacks or

Byzantine failures. Get network overload on every

servers.Security issues such as data integrity and

availability are the main obstacles in this system.

III.PROPOSED SYSTEM
We propose an enhanced dynamic proof of

retrievability scheme supporting public audit ability and

communication-efficient recovery from data

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 179

corruptions. To this end, we split up the data into small

data blocks and encode each data block individually

using network coding. Network coding and erasure

codes are adopted to encode data blocks to achieve

within server and cross server data redundancy,

tolerating data corruption. By combing range based on

encrypted Base64 method and improved version of

aggregately signature based broadcast encryption, our

construction can support efficient data dynamics while

defending against data replay attack.

3.1.ADVANTAGES OF PROPOSED SYSTEM

� Improve data reliability and availability.

� The inter coding and outer coding of

outsourced data enables efficient recovery

when data corruption occurs.

� Using trusted Third Party Auditor(TPA) for

data audit report and data audit delegation.

� Reduce server hacks or Byzantine failure to

maintain reputation.

� Increase security by sending key to data owner

to upload and retrive files.

� When one server is corrupted, the original data

can be recovered by simply copying the entire

data from one of the healthy servers.

3.2.SYSTEM ARCHITECTURE

3.2.1.ARCHITECTURE DESCRIPTION

Encoding

 We follow the same coding structure as HAIL

[21] by exploiting both the within-server redundancy

and cross-server redundancy to improve data reliability

and availability. The key difference between the

existing approaches and ours is that we adopt network

coding instead of erasure codes for obtaining the cross-

server redundancy. Specifically, we utilize the

functional minimum storage regenerating (FMSR) code

[19] as the cross-server code. FMSR belongs to

Maximum Distance Separable (MDS) codes. An MDS

code is defined by the parameters (�,�), where �<�. An

(�,�)-MDS code means that the original data can be

reconstructed from any � out of � servers. FMSR

encodes a data file � of size ∣�∣ into �(�−�) data blocks

of size ∣�∣/(�(� − �)) each.

 1) Outer code. Let � = (�1,�2,⋅⋅⋅ ,��) be the

data file, and �	 = [
�,�] be an encoding matrix for

some coefficients in the Galois field �(28) where � =

1,⋅⋅⋅ ,�(� − �),� = 1,⋅⋅⋅ ,�(� − �). Each row vector of �	

is an encoding coefficient vector (���) that contains

�(�−�) elements. We use ���� to denote the �th row

vector of �	. For each block ��(1 ≤ � ≤ �), we first

divide it into �(�−�) equal-size native blocks. Then, we

encode these �(�−�) native blocks into �(�−�) encoded

blocks, denoted by ��,� which is computed by the scalar

product of ���� and the native blocks vector ��, i.e.

��,� = ∑�(�−�) �=1
�,���,�, where 1 ≤ � ≤ �,1 ≤ � ≤

�(�−�). All arithmetic operations are performed over

�(28). Each ��,� is formed by a linear combination of

the �(�−�) native blocks. The encoded blocks ��,� are

then stored in the � storage servers, each having � − �

blocks. We use ��,�,�(1 ≤ � ≤ �,1 ≤ � ≤ �,1 ≤ � ≤ � − �)

to denote the encoded block on a server, i.e. the �-th

encoded block of �� on the � server. There are many

ways of constructing �	, as long as it satisfies the

MDS property and the repair MDS property [19].

 2) Inner code. In order to save communication

cost, we use an (�′,�′) erasure codes as the within-server

code to encode each ��,�,� into a new encoded block

�′�,�,�,�(1 ≤ � ≤ �′). An (�′,�′) erasure code encodes �′

fragments of data block into �′ fragments such that up

to ⌊(�′ −�′)/2⌋ errors, or up to �′ − �′ erasures can be

corrected. When a small fragment is corrupted, the

server can recover the original data from the corruption

locally instead of retrieving data blocks from other

healthy servers.We use an (4,2)-FMSR code to achieve

the cross-server redundancy and an (5,3) erasure code

to achieve the within-server redundancy.

Initialization

 Let and � be multiplicative cyclic groups

of the same prime order �. A bilinear map is a map �:

× → � with the following properties [31]:

1)Computable: there exists an efficiently computable

algorithm for computing �; 2)Bilinear: for all �,�∈ℤ�,

it holds that �(��,��) = �(�,�)��; 3)Non-degenerate:

�(�,�) ∕= 1 for any generator � of ; 4)for any

�1,�2,�∈, �(�1�2,�) = �(�1,�) ⋅�(�2,�). Let ℎ(⋅) :

{0,1}∗ → be a secure hash function mapping a string

to uniformly. The system parameters and metadata

tags are generated as follows. 1) KeyGen: The data

owner randomly selects an element ∈ℤ∗�,!∈∖{1} .

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 180

Then the data owner computes # = �− ,$ = �(!,�). The

system public parameters are (�,ℎ,�,,�,�), the public

key is �� = (#,$) and the secret key is �� = (,!). 2)

TagGen: Given a file �, the data owner generates an

identity %�& for � and divides � into � blocks, i.e. � =

(�1,⋅⋅⋅ ,��) where ��∈ℤ∗�. For each block ��, the

data owner encodes it into �′�(�−�) encoded blocks

��,�,�(1 ≤ � ≤ �,1 ≤ � ≤ �(� − �),1 ≤ � ≤ �′) via a (�,�)-

FMSR code and a (�′,�′)-erasure code. In order to

tolerate cloud server data corruption, the data owner

stores ��′�(� − �) encoded blocks in � cloud severs.

Each cloud server stores ��′(� − �) encoded blocks. In

each cloud server, these ��′(� − �) encoded blocks are

organized by an rb23Tree ��(1 ≤ � ≤ �). In each ��,

each node stores �′(�−�) encoded blocks of the same

original data block. The data owner then computes the

hash value of the �′(�−�) encoded blocks of data block

��,�(1 ≤ � ≤ �,1 ≤ � ≤ �) for each cloud server, i.e. '�,�

= ℎ(%�&∣∣���), where ��� =

�′�,�,1,1∣∣⋅⋅⋅∣∣�′�,�,1,�′∣∣⋅⋅⋅∣∣�′�,�,�−�,1∣∣⋅⋅⋅∣∣�′�,�,�−�,�′

Finally, the data owner computes the tag (�,� for the

encoded blocks in each server ��,� : (�,� =

(!���'�,�) . Denote the set of all tags by)� =

{(�,�}1≤�≤�,1≤�≤�. Then, the data owner sends the

encoded blocks �′�,�,�,� with the information *��,� =

{%�&,)�,��} to the corresponding server, sends the %�&

and tag value �(++�)� of root node of each rb23Tree to

TPA and keeps the information *�+,� = {%�&,�(++�)�}

with the encoding matrix �	 locally. 3) rb23Tree: The

range-based 2-3 tree or rb23Tree for short can not only

offer the dynamic property of 2-3 trees with logarithmic

complexity but also allows the verifier to verify the

value and index of the leaf node. In the rb23Tree, each

node stores three types of information: ∙�(�): the height

of node �. The height of leaf node is defined 1. ∙ (�):

the range value of node �, namely the number of leaves

corresponding to the subtree rooted at �. If � is a leaf,

 (�) is 1 and if � is NULL, (�) is 0. The (�) of the

root node is the number of leaves in the rb23Tree.

∙�(�)the tag value of node �. �(�) is defined as

'(�(�)∣∣ (�)∣∣�(,ℎ1)∣∣�(,ℎ2)∣∣�(,ℎ3)) or �� or 0 when

�(�) > 1 or � is a leaf or � is NULL, respectively. Here,

∣∣ is the concatenation operation, ,ℎ1,,ℎ2,,ℎ3 are the

tree left-to-right children of � (when � only has two

children, ,ℎ3 is NULL), �� is the element value stored

in leaf node �, and '() is a collision-resistant hash

function.We also define -� to be a proof path for

locating the �th leaf by traversing the path starting at the

root node. We also define the ���(�) and �*.(�),

which denote the minimum and maximum leaf indices

that can be reached via node �, respectively. When

locating an appointed leaf node whose index is �, we

need to calculate the values of ���() and �*.() from

the root node to subjacent node step by step. Note that a

node � is on the path from the �th leaf node to the root

node if and only if �∈ {���(�),�*.(�)}. Assuming the

proof path -� = {�1,⋅⋅⋅ ,�/}, where �1 is the �th leaf

node, �/ is the root node, and each node ��∈-� is

associated with an 8-element tuple �* �(��) =

{�(��), (��), (,1),�(,1), (,2),�(,2), (,3),�(,3)}. When

� = 1, �� is the leaf node and (��) in �* �(��) is �(��),

i.e., the tag value of the leaf node. ,1,,2,,3 are ��’s

three left-to-right children and (,�) = �(,�) = −1(1 ≤ �

≤ 3) if ,�∈-�, (,�) = �(,�) = 0 if ,� does not exist. In

Fig.4, we give an example of rb23Tree. We use ��,� to

denote a node where � is the height and the � is the

index. Each inner node � stores (�(�), (�),�(�)).

Suppose we want to verify the information of the 7th

leaf node. The proof path is -� = {�1,7,�2,3,�3,2,�4,1}.

Data Integrity Verification

 After the encoded data file with the metadata

tags and the rb23Tree are outsourced to the server, TPA

can periodically launch integrity checks on behalf of the

data owner. On receiving the challenge, the server

generates a proof and sends it to TPA.

 1) ChalGen: In each auditing round, TPA first

randomly selects a number �1 ∈ℤ∗� and computes ,1 =

��1. Then, TPA randomly picks , elements 0 = {�1,⋅⋅⋅

,�,} from the set 1,⋅⋅⋅ ,� where � is the number of data

blocks. Without loss of generality, we assume �1 ≤ ⋅⋅⋅ ≤

�, that can be generated using pseudo-random

permutation. For each �� in 0, TPA chooses a random

value ��∈ℤ∗�. Then, the TPA sends the challenge ,ℎ*�

= {(�,��)�∈0,,1} to each server. According to the ,ℎ*�,

each server returns {'�,�(�∈0,1≤�≤�)} to TPA. In

response, TPA chooses a random element �∈� and

computes ,2 = #�1,1� = �⋅�(∏�∈0'���,�,,2). Finally,

the value 1� is sent back to each server.

 2) ProofGen: All servers run this algorithm to generate

proofs to prove the integrity of the checked encoded

blocks. Specifically, each server executes the following

computing independently:

(� = ∏�∈0(���,�,2� = ∑�∈0�����,

�∗� = 1�⋅�((�,,1) (3)

Each server then sends the �∗� and 2� as the proofs to

TPA. All the proof paths -�(�∈0) are also returned to

TPA. So for each server the proof � is � =

{�∗�,2�,-�(�∈0)}.

3) VerifyProof: TPA runs this algorithm to validate the

proof � from each server. For � = 1,⋅⋅⋅ ,� TPA first

calculates 3� = �(!,,−1 2)2� according to the 2�

returned by CSP. Then, TPA checks whether equation

(4) holds and executes Algorithm 1 to verify whether

�+����+�[�] = � and �*���[�] = �(++�)�.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 181

�3�? =�∗� (4)

Algorithm 1 ����....****����������������(����(++++++++����)����,----����,����)

 This algorithm allows an entity, who knows �(++�)�,

to verify the ��ℎ element �� of (ordered set) 4 = {�1,⋅⋅⋅

,��} is stored exactly at the ��ℎ leaf by examining proof

path (ordered set) -�,� = �1,⋅⋅⋅ ,�� provided by the

server.

1)initialize an array �+����+�[1⋅⋅⋅�] = 0 and array

�*���[1⋅⋅⋅�] = 0. //�+����+� tracks the index of the leaf

that will be checked with �(⋅) = ��, �*��� tracks �(��)

where ��∈-�,�(�∈0).

 2)�+����+�[1] ← 1, �*���[1] ← ��.

 3)for � = 2,⋅⋅⋅ ,�, do //�� has three children ,ℎ1,,ℎ2,,ℎ3

 if ,ℎ1 ∈-�,�(�∈0), i.e., (,ℎ1) = −1,�(,ℎ1) =

−1, then

 �+����+�[�] ← �+����+�[� − 1],

�*���[�] ← '(�(��)∣∣ (��)∣∣�*���[� −

1]∣∣�(,ℎ2)∣∣�(,ℎ3)).

 end if

 if ,ℎ2 ∈-�,�(�∈0), i.e., (,ℎ2) = −1,�(,ℎ2) =

−1, then

 �+����+�[�] ← �+����+�[� − 1] +

 (,ℎ1), �*���[�] ← '(�(��)∣∣ (��)∣∣�(,ℎ1)∣∣�*���[� −

1]∣∣�(,ℎ3)).

 end if

 if ,ℎ3 ∈-�,�(�∈0), i.e., (,ℎ3) = −1,�(,ℎ3) =

−1, then

 �+����+�[�] ← �+����+�[� − 1] +

 (,ℎ1) + (,ℎ2), �*���[�] ←

'(�(��)∣∣ (��)∣∣�(,ℎ1)∣∣�(,ℎ2)∣∣�*���[� − 1]).

 end if

 end for

4)if �+����+�[�] = � and �*���[�] = �(++�)�, then

 return TRUE

else

 return FALSE

 end if

Secure Data Updates
 In this subsection, we discuss the dynamic

update operations including block modification, block

insertion and block deletion.

 1)UpdateRequest: The data owner sends the

update request {+�,02 = {� − 1,�,� + 1}} to each server

where +�∈ {	,0,5} is the update operation, � is the

update index. After receiving the update request, each

server returns the corresponding proof path -�,�(�∈02)

to the data owner. The data owner then calls the

�.*����(�(++�)�,-�,�)(�∈02) to verify the validity of

the path. If all verifications have been passed, the data

owner executes the following operations according to

the +� (Without loss of generality, we assume 2 ≤ � ≤

�.). +� = 	: The data owner downloads �′�(� − �)

encoded blocks of �� from any � of the � servers and

decodes them to recover the original data block �� (see

the Decoding Procedure). Then data owner encodes the

new block �∗� using the original encoding matrix �	

stored locally, generate new encoded blocks �∗�,�,�,�

and compute the new tags (∗�,�. The new encoded

blocks, the new tags are sent to the each corresponding

server. +� = 0: The data owner generates the encoded

blocks �∗�,�,�,� for the new block �∗� and computes

the tags (∗�,�. The new encoded blocks, the new tags

are then sent to the each corresponding server. +� = 5:

The data owner sends the deletion instruction and the

index � to the each corresponding server.

 2) Update: After receiving the update request,

each server will adjust his own rb23Tree �� according

to the request. According to the proof path -�,�(�∈02)

received from each server, the data owner can construct

a partial rb23Tree and update the information on

-�,�(�∈02) by himself. We use -���6,�(�∈02) to denote

the new proof path the data owner maintains after

updating path -�,� himself. The data owner can

compute a new �(++�) ��6,� according to the

-���6,�. In addition, we use �′ � to denote the new

rb23Tree in the server � after updates. After adjustment,

each server will send a new path information -′ �−1,� or

-′ �+1,� to the data owner according to the new

rb23Tree �′ �. Then, the data owner calls the

�.*����(�(++�)�,-�′,�)(�′ = {(� − 1)′,(� + 1)′}) to

compute the new root value �(++�)′ � of �′ �, which is

further compared with the �(++�) ��6,� computed by

the data owner himself to verify the correctness of the

update request execution and the rb23Tree update.

Data Recovery

 By periodical integrity checking, the TPA may

find out the outsourced data is corrupted. Then, the TPA

can locate the corrupted fragments or failed server via

binary verification just like the binary search and return

the positions to the data owner. When a server is still

available but some small fragments of data are

corrupted, i.e., for the encoded block �′�,�,�,�(1 ≤ � ≤

�,1 ≤ � ≤ �,1 ≤ � ≤ � − �,1 ≤ � ≤ �′), the number of

errors is less than ⌊(�′−�′)/2⌋, or the number of erasures

is less than �′−�′. The server then can correct the errors

or erasures locally by the erasure codes, which involves

no communication cost, and there is no need to

recompute the metadata tags. When a server is down,

the data owner can execute the iterative recovery

procedure to recover the failure and generate new

encoded blocks and the corresponding metadata tags.

Iterative Recovery Procedure: The recovery process for

a permanent single-server data corruption is as follows:

1) Select �−1 ���� randomly. Suppose the encoded

blocks of the �� on the server � are corrupted, i.e.,

�′�,�,1,1,⋅⋅⋅ ,�′�,�,1,�′,⋅⋅⋅ ,�′�,�,�−�,1,⋅⋅⋅ ,�′�,�,�−�,�′.

The data owner selects � − 1 ���� from encoded

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 182

matrix �	 as follows: exclude the � − ����� from

(�−1)(�−�)+1 to (�−1)(�−�)+�−� where � = 1,⋅⋅⋅ ,�. For

each � = 1,⋅⋅⋅ ,� and � ∕= �, choose one ��� from

(�−1)(�−�)+1 to (�−1)(�−�)+�−� randomly. Then � − 1

���� are selected. Each ��� in the encoded matrix �	

is corresponding to one of the encoded blocks. We

denote these ���� by ����1,����2,⋅⋅⋅ ,�����−1.

2) Generate a repair matrix. The data owner constructs a

repair matrix #	 = [7�,�], where � = 1,⋅⋅⋅ ,� − �,� = 1,⋅⋅⋅

,� − 1. Each element 7�,� is randomly selected from

�(28).

3) Compute ����′ for the new encode blocks and

generate a new encoding matrix �	′. The data owner

multiplies the #	 generated in 2) with the ���� picked

in 1) to construct � − � new ����′, which are denoted

by ��� ′ � = ∑�−1 �=1 7�,������ for � = 1,2,⋅⋅⋅,� − �.

Generate a new encoding matrix denoted by �	′ as

follows: when server �(1 ≤ � ≤ �) is a healthy server the

corresponding � − � row vectors of �	′ is ����� ,

where (� − 1)(� − �) + 1 ≤ � ≤ (� − 1)(� − �) + � − � and

each ���� is selected from the original �	. When

server � is corrupted, the corresponding � − � row

vectors of �	′ are ��� ′ � where 1 ≤ � ≤ � − �.

4) Check whether both the MDS and repair MDS

properties are satisfied or not. If either check fails, the

data owner returns to 1) and repeats the above steps.

5) Download the actual encoded blocks and regenerate

new encoded blocks. Using the #	 multiply the � − 1

blocks selected from � − 1 servers corresponding to the

�−1 ���� selected in 1) to generate new encoded

blocks, which are encoded again via a (�′,�′)-erasure

codes. The encoded blocks, the corresponding metadata

tags and rb23Tree are stored in a new server.

IV.CONCLUSION

In this paper, we proposed a new dynamic proof of

retrievability scheme for coded cloud storage systems.

Network coding and erasure codes are adopted to

encode data blocks to achieve within-server and cross

server data redundancy, tolerating data corruptions and

supporting communication-efficient data recovery. By

combing range-based 2-3 tree and an improved version

of aggregatable signature-based broadcast (ASBB)

encryption, our construction can support efficient data

dynamics while defending against data replay attack

and pollution attack. Security analysis and experimental

evaluations demonstrated the practicality of our

construction in coded cloud storage systems.

REFERENCES

[1] Zhengwei Ren, Lina Wang, Qian Wang, Member,

IEEE, Rongwei Yu, and Ruyi Deng,"Dynamic Proofs

of Retrievability for Coded Cloud Storage Systems"

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H.

Katz, A.Konwinski, G. Lee, D.A. Patterson, A. Rabkin,

I. Stoica, and M. Zaharia, “Above the Clouds: A

Berkeley View of Cloud Computing,” Commun. ACM,

vol. 53, no. 4, pp. 50-58, 2010.

[3] Amazon.com, “Amazon S3 Availability Event: July

20, 2008,” http://status.aws.amazon.com/s3-

20080720.html, July 2008.

[4] S. Wilson, “Appengine Outage,”

http://www.cioweblog.com/50226711/appengine

outage.php, June 2008.

[5] B. Krebs, “Payment Processor Breach May Be

Largest Ever,”

http://voices.washingtonpost.com/securityfix/2009/01/p

ayment processor breach may b.html, 2009.

 [6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, “Provable Data

Possession at Untrusted Stores,” Proc. 14th ACM Conf.

Computer and Comm. Security (CCS’07), pp. 598-609,

2007.

[7] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,

“Enabling Public Verifiability and Data Dynamic for

Storage Security in Cloud Computing,” Proc. 14th

European Symp. Research in Computer Security

(ESORICS’09), pp. 355-370, 2009.

[8] A. Juels and B.S. Kaliski, “PORs: Proofs of

Retrievability for Large Files,” Proc. 14th ACM Conf.

Computer and Comm. Security (CCS’07), pp. 584-597,

2007.

[9] C. Erway, A. Kupcu, C. Papamanthou, and R.

Tamassia, “Dynamic Provable Data Possession,” Proc.

16th ACM Conf. Computer and Comm. Security

(CCS’09), pp. 213-222, 2009.

[10] H. Shacham and B. Waters, “Compact Proofs of

Retrievability,” Proc. 14th Int’l Conf. Theory and

Application of Cryptology and Information Security:

Advances in Cryptology (ASIACRYPT’08), pp. 90-

107, 2008.

