
ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 168

DATA PROCESSING IN CLOUD WITH

AVL STRUCTURE AND BOOTSTRAP

ACCESS CONTROL
HEMAVATHI.K, PRIYANKA.A

MAGNA COLLEGE OF ENGINEERING

ABSTRACT:The corporate networks such as

supply chain networks have to share relevant

information among the companies which are in

collaboration in the same industry sector. So, they

have to store, retrieve and process a huge amount

of data. This requires huge databases and servers.

Hence they choose third party data warehouse to

store their data.. Also a data warehouse is static

that is its storage procedure is constant. With the

advent of cloud computing, corporate networks

store their data in the shared knowledge plane

which is cloudy. But they have to decide which

part of the data would be visible for which users.

To accomplish this task, the bootstrap access

control mechanism is used which decides the

accessibility of the user while entering the

database. So, the data are processed with map

reduce

algorithm and stored in a BalancedOverlay

Network (BATON). BATON uses AVL tree

structure for storing data. Also, it supports peer to

peer system in which a separate server is provided

for each company in the corporate network and in

each server, the required redundancy is

maintained. “Pay as you go” pricing policy is

followed in this system which is a two way (Service

provider and corporate network) beneficial

pricing policy. In this policy, the user will be

charged by categorizing his needs based on a

range of memory required, duration and security

policy.

I.INTRODUCTION

COMPANIES of the same industry sector are often

connected into a corporate network for collaboration

purposes. Each company maintains its own site and

selectively shares a portion of its business data with

From a technical perspective, the key for the success

of a corporate network is choosing the right data

sharing platform, a system which enables the shared

data (stored and maintained by different companies)

network-wide visible and supports efficient analytical

queries over those data. Traditionally, data sharing is

achieved by building a centralized data warehouse,

which periodically extracts data from the internal

production systems (e.g., ERP) of each company for

subsequent querying. Unfortunately, such a

warehousing solution has some deficiencies in real

deployment.

First, the corporate network needs to scale up to

support thousands of participants, while

theinstallation of a large-scale centralized data

warehouse system entails nontrivial costs including

huge hardware/software investments(a.k.a total cost

of ownership) and high maintenance cost (a.k.a total

cost of operations) [16]. In the real world, most

companies are not keen to invest heavily on

additional information systems until they can clearly

see the potential return on investment (ROI) [21].

Second, companies want to fully customize the

access control policy to determine which business

partners can see which part of their shared data.

Unfortunately, most of the data warehouse solutions

fail tothe others. Examples of such corporate

networks include supply chain networks where

organizations such as suppliers, manufacturers, and

retailers collaborate with each other to achieve their

very own business goals including planning

production-line, making acquisition strategies and

choosing marketing solutions.

installation of alarge-scale centralized data

warehouse system entailsnontrivial costs including

huge hardware/software investments(a.k.a total cost

of ownership) and high maintenancecost (a.k.a total

cost of operations) [16]. In the realworld, most

companies are not keen to invest heavily

onadditional information systems until they can

clearly seethe potential return on investment (ROI)

[21]. Second,companies want to fully customize the

access

control policyto determine which business partners

can see whichpart of their shared data.

Unfortunately, most of the data warehouse solutions fail

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 169

to offer such flexibilities. Finally,to maximize the

revenues, companies often dynamicallyadjust their

business process and may change their

businesspartners. Therefore, the participants may join

andleave the corporate networks at will. The data

warehousesolution has not been designed to handle

such dynamicity.

To address the aforementioned problems, this

paperpresents BestPeer++, a cloud enabled data sharing

platformdesigned for corporate network applications.

By integratingcloud computing, database, and peer-to-

peer (P2P) technologies,BestPeer++ achieves its query

processing efficiencyand is a promising approach for

corporate network applications,with the following

distinguished features.

BestPeer++ is deployed as a service in the cloud.To

form a corporate network, companies simplyregister

their sites with the BestPeer++ service provider,launch

BestPeer++ instances in the cloudand finally export

data to those instances for sharing.BestPeer++ adopts

the pay-as-you-go businessmodel popularized by cloud

computing [9]. Thetotal cost of ownership is therefore

substantiallyreduced since companies do not have to

buy anyhardware/software in advance. Instead, they

payfor what they use in terms of BestPeer++ instance’s

hours and storage capacity.

BestPeer++ employs a hybrid design for achievinghigh

performance query processing. The majorworkload of a

corporate network is simple, lowoverheadqueries. Such

queries typically onlyinvolve querying a very small

number of businesspartners and can be processed in

short time. Best-Peer++ is mainly optimized for these

queries. Forinfrequent time-consuming analytical tasks,

we providean interface for exporting the data from

Best-Peer++ to Hadoop and allow users to analyze

thosedata using MapReduce.

In summary, the main contribution of this paper is

thedesign of BestPeer++ system that provides

economical,flexible and scalable solutions for corporate

network applications.We demonstrate the efficiency of

BestPeer++ bybenchmarking BestPeer++ against

HadoopDB [2], arecently proposed large-scale data

processing system,over a set of queries designed for

data sharing applications.

The results show that for simple, low-overheadqueries,

the performance of BestPeer++ is significantly

betterthan HadoopDB.The rest of the paper is organized

as follows. Section 2presents the overview of

BestPeer++ system. We subsequentlydescribe the

design of BestPeer++ core components,including the

bootstrap peer in Section 3 and thenormal peer in

Section 4. The pay-as-you-go query processingstrategy

adopted in BestPeer++ is presented in Section 5.Section

6 evaluates the performance of BestPeer++ in termsof

efficiency and throughput.

II.EXISTING SYSTEM

The corporate networks stores their bulk data in a third

party data warehouse which may have security threats

and high cost.Also access control mechanism is not

well defined for various categories of users like

suppliers, manufacturers and retailers.The data are

stored in an unstructured manner so that retrieval of

data and processing them are tedious.

There is no processing like sorting or clustering before

storing the data from the server. So, while retrieving,

the complexity of the system will be increased because

it has to search for the whole database.

The scalability of the system is very low since it cannot

scale up to thousands of articipants.

The storage of data in the data warehouse system entails

non trivial costs, including hardware/software

investment and high maintenance cost.

The inside processing of data marts and classification of

fact tables and dimension tables is complex tasks when

we store data in the data warehouse.

The system is not supported for heterogeneous

environment that is participants of the network using

different platforms cannot be supported.

Best Peer++ extends the role-based access control for

the inherent distributed environment of corporate

networks. Through a web console interface, companies

can easily configure their access control policies and

prevent undesired business partners to access their

shared data. Best Peer++ employs P2P technology to

retrieve data between business partners. Best Peer++

instances are organized as a structured P2P overlay

network named BATON [13]. The data are indexed by

the table name, column name and data range for

efficient retrieval.

III.PROPOSED SYSTEM

The data to be shared in the in the corporate network

are stored in the cloud database after proper

processing.base. The data are structured and stored in

the balanced tree overlay network, which uses the AVL

tree structure.The retrieval of data from these databases

is simple since they are stored in a well structured

manner.

The access control for various categories of participants

of the corporate network can be implemented using

bootstrap server.The scalability of the system is high as

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 170

it can hold thousands of participants without any

complexity.

SYSTEM ARCHITECTURE

MAP REDUCE ALGORITHM

MapReduce is a programming model and an associated

implementation for processing and generate large data

sets with a parallel, distributed algorithm on a cluster.

A MapReduce program is composed of

a Map() procedure that performs filtering and sorting

(such as sorting students by first name into queues, one

queue for each name) and a Reduce() procedure that

performs a summary operation (such as counting the

number of students in each queue, yielding name

frequencies). The "MapReduce System" (also called

"infrastructure" or "framework") orchestrates the

processing by marshalling the distributed servers,

running the various tasks in parallel, managing all

communications and data transfers between the various

parts of the system, and providing

for redundancy and fault tolerance.The model is

inspired by the map and reduce functions commonly

used in functional programming, although their purpose

in the MapReduce framework is not the same as in their

original forms. The key contributions of the

MapReduce framework are not the actual map and

reduce functions, but the scalability and fault-tolerance

achieved for a variety of applications by optimizing the

execution engine once. As such, a single-

threaded implementation of MapReduce (such

as MongoDB) will usually not be faster than a

traditional (non-MapReduce) implementation; any gains

are usually only seen with multi-

threaded implementations. Only when the optimized

distributed shuffle operation (which reduces network

communication cost) and fault tolerance features of the

MapReduce framework come into play, is the use of

this model beneficial.MapReduce libraries have been

written in many programming languages, with different

levels of optimization. A popular open-

source implementation is Apache Hadoop. The name

MapReduce originally referred to the

proprietary Google technology, but has since

been generalized.

BENCH MARKING

This section evaluates the performance and throughput

of BestPeer++ on Amazon cloud platform. For the

performancebenchmark, we compare the query latency

of Best-Peer++ with HadoopDB using five queries

selected from typical corporate network applications

workloads. For the throughput benchmark, we create a

simple supply-chain network consisting of suppliers and

retailers and study the query throughput of the system.

 Performance Benchmarking

This benchmark compares the performance of

BestPeer++ with HadoopDB. We choose HadoopDB as

our benchmarktarget since it is an alternative promising

solutionfor our problem and adopts an architecture

similar toours. Comparing the two systems (i.e.,

HadoopDB andBestPeer++) reveals the performance

gap between a generaldata warehousing system and a

data sharing systemspecially designed for corporate

network applications.

 Benchmark Environment

We run our experiments on Amazon m1.small

DBinstances launched in the ap-southeast-1 region.

Each DB small instance has 1.7 GB memory, 1 EC2

Compute Unit (1 CPU virtual core). We attach each

instance with 50GB storage space. We observe that the

I/O performance of Amazon cloud is not stable. The

hdparm reports that the buffered read performance of

each instance ranges from 30 to 120 MB/sec. To

produce a consistent benchmark

result, we run our experiments at the weekend when

most of the instances are idle. Overall, the buffered read

performance of each small instance is about 90 MB/sec

during our benchmark. The end-to-end network

bandwidth

between DB small instances, measured by iperf, is

approximately 100 MB/sec. We execute each

benchmarkquery three times and report the average

execution time. The benchmark is performed on cluster

sizes of 10,20, 50 nodes. For the Best Peer++ system,

these nodes are normal peers. We launch an additional

dedicated node asthe bootstrap peer. For HadoopDB

system, each launched cluster node acts as a worker

node which hosts a Hadooptask tracker node and a

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 171

PostgreSQL database server instance. We also use a

dedicated node as the Hadoop jobtracker node and

HDFS name node.

ALGORITHM (BOOTSTRAP DAEMON())

While true do

Status S=invokeCloudWatch ()

Array List peerList=BootStrap.getAllPeer ()

Array List newPeer=new Array List()

for i=0 to peerList.size () do

if peerList.get (i).fails() then

Peer peer=new Peer ()

peer.loadMySQLBackUpFrontRDS (peerList.get (i))

newPeer.add (peer)

BootStrap.setBlackList (peerList.get (i))

else

If peerList.get (i).overloaded () then

Peer peer=new Peer ()

peer. Upscale((peerList.get (i))

peer. Clone (peerList.get (i_.getDB ())

BootStrap.setBlack.List (peerList.get (i))

newPeer.add (peer)

BootStrap.removeAllPeersInBlackList ()

BootStrap.addAllNewPeer (newPeer)

BootStrap.broadcastNetworkStatus ()

Sleep T seconds

HADOOPDB SETTINGS

We carefully follow the instructions presented in the

original HadoopDB paper to configure HadoopDB. The

settingconsists of the setup of a Hadoop cluster and the

PostgreSQLdatabase server hosted at each worker node.

We use Hadoop version 0.19.2 running on Java

1.6.0_20. The block size of HDFS is set to be 256 MB.

The replication factor is set to 3. For each task tracker

node, we run one map task and one reduce task. The

maximum Java heap size consumed by the map task or

the reduce task is 1024 MB. The buffer size of

read/write operations is set to 128 KB. We also set the

sort buffer of the map task to 512 MB with 200

concurrent streams for merging. For reduce task, we set

the number of threads used for parallel file copying in

the shuffle phase to be 50. We also enable the buffer

reusebetween the shuffling phase and the merging

phase. As a final optimization, we enable JVM reuse.

For the PostgreSQL instance, we run PostgreSQL

version 8.2.5 on eachworker node. The shared buffers

used by PostgreSQL is set to 512MB. Theworking

memory size is 1 GB.We only present the results for

SMS-coded HadoopDB, i.e., the query plan is generated

byHadoopDB’s SMS planner.

DATA LOADING

The data loading process of BestPeer++ is performed by

all normal peers in parallel and is consisted of two

steps. In thefirst step, each normal peer invokes the data

loader to load raw TPC-H data into the local MySQL

databases. In additionto copying raw data, we also build

indices to speedup query processing. First, a primary

index is built for each TPC-Htable on the primary key.

Second, some additional secondary indices are built on

selected columns of TPC-H tables. Table 4 summarizes

the secondary indices that we built. After the data is

loaded into the local MySQL database, each normalpeer

invokes the data indexer to publish index entries to the

BestPeer++ network. For each table, the data indexer

publishes a table index entry and a column index entry

for each column. Since the values in TPC-H data sets

follow uniform distribution, each normal peer holds

approximately the same data range for each column of

the table, therefore, we do not configure normal peer to

publish range index. For HadoopDB, data loading

process is straightforward.For each worker node, we

load only raw data into the local PostgreSQL database

instance using SQL COPYcommand and build

corresponding primary and secondary indices for each

table. We did not employ the GlobalHasher and Local

Hasher to further co-partition tables. HadoopDB co-

partitions tables among worker nodes onjoin key in

order to speed up join processing.5 However, a

corporate , data is fully controlled by eachbusiness. It is

undesirable for a certain business to movedata to

normal peers managed by other businesses due

toprivacy and safety concern. Therefore, we disabled

thisco-partition function for HadoopDB.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 172

DATA SETS

Our benchmark consists of five queries, denoted as Q1,

Q2, Q3, Q4, and Q5 which are executed on the TPC-H

data sets. We implement the benchmark queries by

ourselves since the TPC-H queries are complex and

time-consumingqueries which are not suitable for

benchmarking corporate network applications. The

TPC-H benchmark data set consists of eight tables. We

use the original TPC-H schema as the shared global

schema. HadoopDB does not support schema mapping

and access control. To benchmark the two systems in

the same environment, we perform additional

configurations on Best- Peer++ as follows. First, we set

the local schema of each normal peer to be identical to

the global schema.

BENCHMARK SETTINGS

We establish a simple supply-chain network to

benchmark the query throughput of the BestPeer++

system. The supply-chain network consists of a group

of suppliers and a group of retailers which query data

from each other. Each normal peer either acts as a

supplier or a retailer. We set the number of suppliers to

be equal to the number of retailers. Thus, in the cluster

with 10, 20, and 50 normal peers, there are 5, 10, and

25 suppliers and retailers, respectively. We still use the

TPC-H schema as the global shared schema, but

partition the schema into two sub-schema, one for

suppliers and the other for retailers. The supplier

schema consists of the following tables: Supplier,

PartSupp, and Part. The retailer schema

involvesLineItem, Orders, and Customer tables. The

Nation and Region tables are commonly owned by both

supplier peers and retailers peers. We partition the TPC-

H datasets into 25 data sets, one data set for each

nation, andconfigure each normal peer to only host data

from aunique nation. The data partition is performed by

firstpartitioning Customer and Supplier tables

accordingto their nation keys. Then, joining each

Supplier andCustomer data set with the other four tables

(i.e., Part,PartSupp, Orders, LineItem respectively, the

joinedtuples in those tables finally form the

corresponding partitioneddata sets. To reflect the fact

that each table is partitionedbased on nations, we

modify the original TPC-Hschema and add a nation key

column in each table.For scalability evaluation, we

scale-up the amount ofdata and the number of normal

peer proportionally. Eventually,we generate a 50 GB

raw TPC-H data set on 50 normalpeers, which consists

of 25 suppliers and 25 retailers,and measure the

absolute system throughput for the twotypes of peers

respectively. In the performance evaluation,we retain

the data size and peer scale (50 normal peers and50 GB

data in our setup), and increase the throughput, untilthe

point at which the system is saturated and

throughputstops increasing. We report the average

latency versusthroughput curve, as in the YCSB [5]

tool’s terminology.We configure the access control

module as follows. Weset up two roles: supplier and

retailer. The supplier role isgranted full access to tables

hosted by retailer peers. Theretailer role is granted full

access to tables hosted by supplierpeers. We should not

be confused with the supplier.

IV.CONCLUSION

We have discussed the unique challenges posed by

sharing and processing data in an inter-businesses

environment and proposed BestPeer++, a system which

delivers elastic data sharing services, by integrating

cloud computing, database, and peer-to-peer

technologies. The benchmark conducted on Amazon

EC2 cloud platform shows. This work was supported by

the Singapore Ministry of Education Grants No.

MOE2010-T2-2-104 named epic. We would also like to

thank anonymous reviewers for insightful comments.

REFERENCES

[1] K. Aberer, A. Datta, and M. Hauswirth, “Route

MaintenanceOverheads in DHT Overlays,” in 6th

Workshop Distrib. DataStruct., 2004.

[2] A. Abouzeid, K. Bajda-Pawlikowski, D.J. Abadi, A.

Rasin, and A.Silberschatz, “HadoopDB: An

Architectural Hybrid of MapReduceand DBMS

Technologies for Analytical Workloads,” Proc.

VLDB Endowment, vol. 2, no. 1, pp. 922-933, 2009.

[3] C. Batini, M. Lenzerini, and S. Navathe, “A

Comparative Analysisof Methodologies for Database

Schema Integration,” ACM ComputingSurveys, vol. 18,

no. 4, pp. 323-364, 1986.

[4] D. Bermbach and S. Tai, “Eventual Consistency:

How Soon isEventual? An Evaluation of Amazon s3’s

Consistency Behavior,”

in Proc. 6th Workshop Middleware Serv. Oriented

Comput. (MW4SOC’11), pp. 1:1-1:6, NY, USA, 2011.

[5] B. Cooper, A. Silberstein, E. Tam, R.

Ramakrishnan, and R. Sears,“Benchmarking Cloud

Serving Systems with YCSB,” Proc. FirstACM Symp.

Cloud Computing, pp. 143-154, 2010.

