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ABSTRACT 

 Repeated series mining is well 

known and well studied trouble in data 

mining. The productivity of the algorithm is 

used in many other regions like chemistry, 

bioinformatics, and market basket analysis. 

Unfortunately the repeated series removal is 

computationally quite expensive. In this 

project we present a novel parallel algorithm 

for removal of repeated series based on a 

static load-balancing. The static load-

balancing is done by measuring the 

computational time using a probabilistic 

algorithm. For logical size of occurrence, the 

algorithms achieve speedups up to ≈3/4 .P 

where P is the number of processors. In the 

investigational estimation, we show that our 

technique performs significantly better than 

the present state-of-the-art techniques. The 

presented approach is very universal: it can 

be used for static load-balancing of 

additional pattern removal algorithms such 

as itemset/ graph /tree mining algorithms. 

 

Index Terms—Data mining, static load-

balancing, parallel algorithms, Repeated 

series mining, probabilistic algorithms. 

1. INTRODUCTION 

 Repeated pattern removal is an 

important data mining technique with a wide 

variety of mined patterns. The mined 

frequent patterns can be sets of items (item 

sets), sequences, graphs, trees, etc. Frequent 

sequence mining was first described in [1]. 

The GSP algorithm presented in [1] is the 

first to solve the problem of frequent 

sequence mining. As the repeated series 

removal is an extension of itemset mining, 

the GSP algorithm is an extension of the 

Apriori algorithm [2]. As a consequence of 

the slowness and memory consumption of 

algorithms described in [2, 1], other 

algorithms were proposed. These two 

algorithms use the so-called prefix-based 

equivalence classes (PBECs in short), i.e., 

represent the pattern as a string and partition 
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the set of all patterns into disjoint sets using 

prefixes. 

There are two kinds of parallel computers: 

shared memory technology and distributed 

memory technology. Parallelizing on the 

shared memory technology is easier than 

parallelizing on distributed memory 

technology. Sampling technique that 

statically load-balance the computation of 

parallel frequent itemset mining process, are 

proposed in [3, 4, 5]. In these three papers, 

the so-called double sampling process and 

its three variants were proposed. 

 

2. BASIC NOTION 

We denote the number of processors by P 

and each individual processor by pi, 1 <= i 

<=P. Let us have a set of items B = {ei} with 

an arbitrary ordering operation < on the 

elements of B. We call an n-tuple E = 

(e1,…, en) an event if and only if: 1) ei 2 

B,2) and ei < ej for i < j. Let us have an 

event E = (e1,…, en), we define the function  

(.) as a mapping that takes an event E and 

creates a set fe1,…, eng. Let us have two 

events E = (e1,…,m en);E0 = (e0 1,…, e0 

m), the concatenation operation _ takes two 

events and produce another event. The 

concatenation operation _ is defined by E _ 

E0 = (e1,…, en; e0 1,…, e0 n). Please note 

that for the concatenation operation _, we 

consider only such events E,E’ so that E . E’ 

is a correct event.  

 

For example: E1 = (1, 2), E2 = (4, 5) then 

(E1) = f1, 2g and (E2) = f4, 5g. An example 

of concatenated events is E1 _ E2 = (1, 2, 4, 

5). The concatenation operation _ may 

produce invalid events: let us have two 

events E1 = (1, 2) and E2 = (2, 5) then the 

concatenation operation would produce (1, 

2, 2, 5). However, (1, 2, 2, 5) is not a valid 

event and is not allowed, see definition of 

event. 

3 BRIEF DESCRIPTION OF THE 

SEQUENTIAL PREFIXSPAN 

ALGORITHM 

The Prefixspan algorithm uses the 

notion of the PBEC. As shown in Section 2 

the PBECs forms a tree. The tree allows the 
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enumeration of the set of all frequent 

sequences F. To enumerate F the algorithm 

explore the tree using the pseudo-projected 

database and PBECs in the DFS manner, see 

Section 2. The volumes of the pseudo 

projected database in terms of the number of 

transactions give us the support. Hence, for 

a sequence S the algorithm preserves the 

pseudo-database as the data structure for 

accumulating information about the 

embeddings of S in the database 

transactions. The algorithm uses the 

monotonicity principle and computes the 

support of the possible extensions of 

sequence S. In this section details are given 

for the following operations: 1) the 

collection of frequent extensions; 2) 

construction of the initial pseudo-projected 

database; 3) projection using a sequence 

extension; 4) projection using an event 

extension. 

 

 

4 OVERVIEW OF EXISTING 

ALGORITHMS 

4.1 overview of sequential algorithms 

There are many BFS and DFS sequential 

algorithms for removal of repeated series. 

The initial sequential algorithm for removal 

of repeated series is based on the Apriori 

algorithm. The Apriori algorithm is a BFS 

algorithm initially created for removal of 

repeated item sets [2]. An development of 

this algorithm, created by the same authors, 

is the GSP algorithm [1]. Both algorithms 

use BFS and make multiple passes over the 

database combined with the monotonicity 

principle. These two algorithms suffer from 

similar problems as the Apriori algorithm 

[3] for frequent itemset removal, e.g., they 

are slow and needs much more memory, 

compared to DFS algorithms. 

 

4.2 overview of parallel algorithms 

As the frequent sequence mining is 

computationally quite expensive, there was 

an effort to come up with parallel 
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algorithms. There are two kinds of parallel 

computers architectures: 1) shared memory 

or 2) distributed memory. Parallelization on 

shared memory computers is quite easy as 

the hardware supports parallelization. An 

example of shared memory sequence mining 

algorithm is in [7]. The problem of mining 

of frequent sequences on clusters of 

workstations is hard, because estimating the 

execution time is an not an easy problem. 

This section discusses two main groups of 

the parallel algorithms: 1) algorithms that 

use the dynamic load-balancing of PBECs; 

2) algorithms that use the static load-

balancing of PBECs. 

 

4.3 Problems of existing parallel 

algorithms 

The problem with all these algorithms is that 

they do not load-balance the computation, 

see Section 9 for comparison with selective 

sampling. Parallelization of the sequential 

algorithms is difficult for two main reasons: 

(1) Computational complexity: it is well 

known that estimating the number of 

frequent itemsets [8, 9] is #P-hard problem. 

Consider the problem of mining of frequent 

sequence with only one event. But such 

problem is similar to the mining of frequent 

itemsets. This means that estimating the 

number of frequent sequences is at least #P-

hard, see Section 5. From the computational 

complexity follows that the selective 

sampling is modifying the task in an 

unpredictable way. 

(2) Size of the PBECs: In order to 

parallelize the sequential Prefixspan 

algorithm, we split the set of all frequent 

sequences using PBECs. The same approach 

is used in [10]. However, in [10] they use 

prefixes of size 1. The algorithm [10] does 

not show how to split the PBECs using 

longer prefixes. 

5 OVERVIEW OF OUR PROPOSED 

METHOD 

Proposed is a novel parallel method that 

statically load-balance the computation. 

That is: the set of all frequent sequences is 

first split into PBECs, the relative execution 

time of each PBEC is estimated and finally 

the PBECs are assigned to processors. The 

method estimates the processing time of one 

PBEC by the sequential Prefixspan 

algorithm using sampling. In this section, we 

explain the intuition behind the process. It is 

important to be aware that the running time 

of the sequential algorithm scales with: 1) 

the database size; 2) the number of frequent 

sequences; 3) the number of embeddings of 

a frequent sequence in database transactions. 
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1) The whole database D is used to run a 

sequential algorithm on the database and 

sample the output of the algorithm, i.e., the 

set of all frequent sequences F. Such 

approach does not make sense: the 

sequential algorithm is executed on the 

whole database D. Therefore, it runs for at 

least the same amount of time as the 

sequential algorithm we use for comparison 

of the speedup of our parallel algorithm.     

2) A database sample Ď⊆D is used to run a 

sequential algorithm using the relative 

support, producing F ‘. F’ is used as an 

approximation to F, however, F’ can be 

quite huge. Therefore, the sample F’s ⊆F’ is 

used for partitioning and scheduling. Such 

an algorithm reduces the execution time of 

the sequential algorithm by reducing the 

database size: |Ď|<<|D|. For a PBEC [S], the 

value |[S] ∩F’|/|F’| estimates the relative 

processing time of a PBEC.|[S]∩F’|/|F’| is 

estimated by |[S]∩F’s|/|F’s|. We call this 

approach the double sampling process. 

6 ESTIMATION OF THE SUPPORT 

AND THE RELATIVE SIZE OF A 

PBEC USING SAMPLING 

In this Section, we show theoretical 

justification of the double sampling process. 

As described in the Section 5, the algorithm 

creates a sample database Ď⊆D. Ď is then 

used for computation of the set of all 

frequent sequences F’ using the relative 

support min_supp*. Afterward, F’ is 

sampled, producing F’s⊆F’. Unfortunately, 

good bounds on the double sampling process 

are not available. However, probabilistic 

guarantees exists on the estimated values, 

such that: (1) guarantees on the estimate of 

the support of a sequence, i.e., probabilistic 

estimate whether a sequence is frequent or 

not; (2) relative size of a PBEC [S] with S 

given independently of F’s. Combining (1) 

and (2) should give a good estimate of the 

relative processing time of the algorithm in a 

single PBEC.  

(1) Estimation of the support: The support 

of a sequence can be estimated using the 

Chernoff bounds and indicator variables. 

The Chernoff bounds and gives us estimate 

whether a sequence is a subsequence of a 

transaction in a database or not. We denote 

by errsupp(S, Ď) = |б(S,D) - б (S, Ď)  the error 

of the estimate of the support of sequence S 

in the database D. Now, we can formulate 

the Chernoff bounds used for estimation of 

the support, originally formulated for 

frequent itemset       mining. 

(2) Estimation of the relative size of a 

PBEC: Let us have a sequence S and a 

PBEC [S]. We want to compute F’s⊆F’such 
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that F’ is obtained from Ď using relative 

support min_supp*. The objective is to 

estimate the relative size of |[S]∩F’|/|F’|by 

|[S]∩F’s|/|F’s|. We hope that |[S]∩F|/|F| is 

approximated by |[S]∩F’|/|F’|, which is 

approximated by |[S]∩F’s|/|F’s|. Please note 

that S must be given independently of F’s. 

The relative size of a PBEC can be used as 

the estimate of the relative processing time 

of the PBEC by a sequential algorithm. This 

estimate ignores some details of the 

sequential algorithm.   

7 WEIGHTING PREFIX TREE 

Until now, we have considered the relative 

processing time of a PBEC, as the relative 

size of samples in that PBEC. The relative 

size of a PBEC estimates the relative 

processing time of that PBEC. The reason is 

that the processing time increase when the 

numbers of frequent sequences in a PBEC 

increase. 

(1) Estimating the weight of collection of 

frequent extensions: From the discussion in 

Section 3 follows that to collect frequent 

extensions of S, we have to process items of 

transactions (k,Q) € D, S ≤ Q. We need to 

estimate the computational complexity 

(processing time) of the collection of 

frequent extensions of the Prefixspan 

algorithm that has the whole database D as 

its input. The estimate is computed as the 

average number of items processed per 

transaction by the same sequential algorithm 

with the database sample D’ as its input. 

(2) Computing the weight of the 

projection operation: in the prior case, we 

expected the computational complexity 

execution time) of the operation of the 

prefixspan algorithm with the whole 

database D as its input. We do so by 

computing the average number of steps of 

the operation in the database sample Ď. Let 

us have a pseudo-projected transaction      

(k,{l1,…,ln})€Ď|s and its corresponding 

transaction (k,Q})€ Ď. 

 

8 THE PARALLEL PREFIXSPAN 

ALGORITHM 

This section contains the main contribution 

of the paper. All the ideas presented in the 

previous sections are integrated here, 

showing how to execute the Prefixspan in 

parallel. The parallel Prefixspan algorithm 

has four phases. In the Phase 1, the method 

produces the weighting tree T containing the 

estimates of the relative processing time of 

the PBECs, see Section 8.1. In the Phase 2, 

the method partitions the set F into PBECs, 

using the tree T, and schedule PBECs on 

processor. In the Phase 3, the method 
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distributes the database in such a way that 

each processor can process independently its 

assigned PBECs. 

 

 

The motivation behind Algorithm 3 is that 

the algorithm time increase when: 1) dataset 

size increase; 2) the support decreases, or in 

another words when the size of F increase. 

See Section 5 for details. 

 

9. EXPERIMENTAL EVALUATIONS 

In this section, we experimentally evaluate 

the proposed method. The whole algorithm 

was implemented in C++ (compiled with 

gcc 4.4) using MPI, resulting in _ 30’000 

lines of code. The implementation was 

executed on the CESNET metacentrum on 

the zegox cluster. Each zegox’s node 

contains two Intel E5-2620 equipped with 

1_-Infiniband. Nodes were exclusively 

allocated for these measurements and used a 

maximum of 5 cores per node (to avoid 

influences from other jobs). 

 

Fig.4. 1) k-depth weighting tree; 2) sample weighting 

tree; 

One event was made from ids of the 

resources fetched in a window of 10 seconds 

by one IP address. From the transactions, 

items were removed if presented in every 

transaction. In Figure 4 are shown the 

speedups of our method. All of the proposed 

methods have speedups up to 20– 32 on 40 

processors for lower values of support. 

These three methods exhibits similar 

performance on the datasets generated using 

the IBM generator. The speedups are lower, 

for higher values of support. For example, 

the T1000I0.3P500PL5SL5TL15 dataset has 

quite good speedups for supports 10’000 an 

8’750 and bad speedups for supports 30’000 

and 20’000. 

 

 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
International Journal of Advanced Research in Management, Architecture, Technology and Engineering (IJARMATE) 
 Vol. 2, Issue 9, September 2016. 

All Rights Reserved @ 2016 IJARMATE                                                            8 

 

10. CONCLUSIONS 

We have proposed an algorithm for mining 

of frequent sequences using static load-

balancing. The method creates a sample of 

frequent sequences and use this sample for 

estimating the relative processing time of the 

algorithm in the PBECs. The estimate of the 

relative processing time is in fact performed 

by estimating the computational complexity 

of processing various PBECs. The relative 

processing time is then used for partitioning 

and scheduling of the PBECs. The problem 

is that the estimated size of a PBEC is 

dependent on the construction of the PBEC 

(which should not happen). This dependency 

could be probably removed by using, for 

example, the bootstrap method. That is: 

getting the whole e Fs and making bootstrap 

samples of e Fs that are used for partitioning 

and estimation of the size of PBECs. 

Currently, those does not seems to be 

necessary, as the speedups are quite 

satisfactory. 

11. FUTURE WORK 

 In future we have to implement the 

parallel algorithm to reduce the complexity 

of computational time and implement the 

result of frequent sequence mining using 

static load balancing. Additionally we have 

to reduce the slowness and memory 

consumption of a process. 
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