
ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and Engineering (IJARMATE)
 Vol. 2, Issue 9, September 2016.

All Rights Reserved @ 2016 IJARMATE 1

Probabilistic static load-balancing of parallel

Mining of repeated series

S. Guha priya Dr.Y.Kalpana
M. C. A, M. Phil (computer science) M. C. A, M.phil, phd.,
VELS University VELS University

Chennai- 117 Chennai- 117

ABSTRACT

 Repeated series mining is well

known and well studied trouble in data

mining. The productivity of the algorithm is

used in many other regions like chemistry,

bioinformatics, and market basket analysis.

Unfortunately the repeated series removal is

computationally quite expensive. In this

project we present a novel parallel algorithm

for removal of repeated series based on a

static load-balancing. The static load-

balancing is done by measuring the

computational time using a probabilistic

algorithm. For logical size of occurrence, the

algorithms achieve speedups up to ≈3/4 .P

where P is the number of processors. In the

investigational estimation, we show that our

technique performs significantly better than

the present state-of-the-art techniques. The

presented approach is very universal: it can

be used for static load-balancing of

additional pattern removal algorithms such

as itemset/ graph /tree mining algorithms.

Index Terms—Data mining, static load-

balancing, parallel algorithms, Repeated

series mining, probabilistic algorithms.

1. INTRODUCTION

 Repeated pattern removal is an

important data mining technique with a wide

variety of mined patterns. The mined

frequent patterns can be sets of items (item

sets), sequences, graphs, trees, etc. Frequent

sequence mining was first described in [1].

The GSP algorithm presented in [1] is the

first to solve the problem of frequent

sequence mining. As the repeated series

removal is an extension of itemset mining,

the GSP algorithm is an extension of the

Apriori algorithm [2]. As a consequence of

the slowness and memory consumption of

algorithms described in [2, 1], other

algorithms were proposed. These two

algorithms use the so-called prefix-based

equivalence classes (PBECs in short), i.e.,

represent the pattern as a string and partition

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and Engineering (IJARMATE)
 Vol. 2, Issue 9, September 2016.

All Rights Reserved @ 2016 IJARMATE 2

the set of all patterns into disjoint sets using

prefixes.

There are two kinds of parallel computers:

shared memory technology and distributed

memory technology. Parallelizing on the

shared memory technology is easier than

parallelizing on distributed memory

technology. Sampling technique that

statically load-balance the computation of

parallel frequent itemset mining process, are

proposed in [3, 4, 5]. In these three papers,

the so-called double sampling process and

its three variants were proposed.

2. BASIC NOTION

We denote the number of processors by P

and each individual processor by pi, 1 <= i

<=P. Let us have a set of items B = {ei} with

an arbitrary ordering operation < on the

elements of B. We call an n-tuple E =

(e1,…, en) an event if and only if: 1) ei 2

B,2) and ei < ej for i < j. Let us have an

event E = (e1,…, en), we define the function

(.) as a mapping that takes an event E and

creates a set fe1,…, eng. Let us have two

events E = (e1,…,m en);E0 = (e0 1,…, e0

m), the concatenation operation _ takes two

events and produce another event. The

concatenation operation _ is defined by E _

E0 = (e1,…, en; e0 1,…, e0 n). Please note

that for the concatenation operation _, we

consider only such events E,E’ so that E . E’

is a correct event.

For example: E1 = (1, 2), E2 = (4, 5) then

(E1) = f1, 2g and (E2) = f4, 5g. An example

of concatenated events is E1 _ E2 = (1, 2, 4,

5). The concatenation operation _ may

produce invalid events: let us have two

events E1 = (1, 2) and E2 = (2, 5) then the

concatenation operation would produce (1,

2, 2, 5). However, (1, 2, 2, 5) is not a valid

event and is not allowed, see definition of

event.

3 BRIEF DESCRIPTION OF THE

SEQUENTIAL PREFIXSPAN

ALGORITHM

The Prefixspan algorithm uses the

notion of the PBEC. As shown in Section 2

the PBECs forms a tree. The tree allows the

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and Engineering (IJARMATE)
 Vol. 2, Issue 9, September 2016.

All Rights Reserved @ 2016 IJARMATE 3

enumeration of the set of all frequent

sequences F. To enumerate F the algorithm

explore the tree using the pseudo-projected

database and PBECs in the DFS manner, see

Section 2. The volumes of the pseudo

projected database in terms of the number of

transactions give us the support. Hence, for

a sequence S the algorithm preserves the

pseudo-database as the data structure for

accumulating information about the

embeddings of S in the database

transactions. The algorithm uses the

monotonicity principle and computes the

support of the possible extensions of

sequence S. In this section details are given

for the following operations: 1) the

collection of frequent extensions; 2)

construction of the initial pseudo-projected

database; 3) projection using a sequence

extension; 4) projection using an event

extension.

4 OVERVIEW OF EXISTING

ALGORITHMS

4.1 overview of sequential algorithms

There are many BFS and DFS sequential

algorithms for removal of repeated series.

The initial sequential algorithm for removal

of repeated series is based on the Apriori

algorithm. The Apriori algorithm is a BFS

algorithm initially created for removal of

repeated item sets [2]. An development of

this algorithm, created by the same authors,

is the GSP algorithm [1]. Both algorithms

use BFS and make multiple passes over the

database combined with the monotonicity

principle. These two algorithms suffer from

similar problems as the Apriori algorithm

[3] for frequent itemset removal, e.g., they

are slow and needs much more memory,

compared to DFS algorithms.

4.2 overview of parallel algorithms

As the frequent sequence mining is

computationally quite expensive, there was

an effort to come up with parallel

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and Engineering (IJARMATE)
 Vol. 2, Issue 9, September 2016.

All Rights Reserved @ 2016 IJARMATE 4

algorithms. There are two kinds of parallel

computers architectures: 1) shared memory

or 2) distributed memory. Parallelization on

shared memory computers is quite easy as

the hardware supports parallelization. An

example of shared memory sequence mining

algorithm is in [7]. The problem of mining

of frequent sequences on clusters of

workstations is hard, because estimating the

execution time is an not an easy problem.

This section discusses two main groups of

the parallel algorithms: 1) algorithms that

use the dynamic load-balancing of PBECs;

2) algorithms that use the static load-

balancing of PBECs.

4.3 Problems of existing parallel

algorithms

The problem with all these algorithms is that

they do not load-balance the computation,

see Section 9 for comparison with selective

sampling. Parallelization of the sequential

algorithms is difficult for two main reasons:

(1) Computational complexity: it is well

known that estimating the number of

frequent itemsets [8, 9] is #P-hard problem.

Consider the problem of mining of frequent

sequence with only one event. But such

problem is similar to the mining of frequent

itemsets. This means that estimating the

number of frequent sequences is at least #P-

hard, see Section 5. From the computational

complexity follows that the selective

sampling is modifying the task in an

unpredictable way.

(2) Size of the PBECs: In order to

parallelize the sequential Prefixspan

algorithm, we split the set of all frequent

sequences using PBECs. The same approach

is used in [10]. However, in [10] they use

prefixes of size 1. The algorithm [10] does

not show how to split the PBECs using

longer prefixes.

5 OVERVIEW OF OUR PROPOSED

METHOD

Proposed is a novel parallel method that

statically load-balance the computation.

That is: the set of all frequent sequences is

first split into PBECs, the relative execution

time of each PBEC is estimated and finally

the PBECs are assigned to processors. The

method estimates the processing time of one

PBEC by the sequential Prefixspan

algorithm using sampling. In this section, we

explain the intuition behind the process. It is

important to be aware that the running time

of the sequential algorithm scales with: 1)

the database size; 2) the number of frequent

sequences; 3) the number of embeddings of

a frequent sequence in database transactions.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and Engineering (IJARMATE)
 Vol. 2, Issue 9, September 2016.

All Rights Reserved @ 2016 IJARMATE 5

1) The whole database D is used to run a

sequential algorithm on the database and

sample the output of the algorithm, i.e., the

set of all frequent sequences F. Such

approach does not make sense: the

sequential algorithm is executed on the

whole database D. Therefore, it runs for at

least the same amount of time as the

sequential algorithm we use for comparison

of the speedup of our parallel algorithm.

2) A database sample Ď⊆D is used to run a

sequential algorithm using the relative

support, producing F ‘. F’ is used as an

approximation to F, however, F’ can be

quite huge. Therefore, the sample F’s ⊆F’ is

used for partitioning and scheduling. Such

an algorithm reduces the execution time of

the sequential algorithm by reducing the

database size: |Ď|<<|D|. For a PBEC [S], the

value |[S] ∩F’|/|F’| estimates the relative

processing time of a PBEC.|[S]∩F’|/|F’| is

estimated by |[S]∩F’s|/|F’s|. We call this

approach the double sampling process.

6 ESTIMATION OF THE SUPPORT

AND THE RELATIVE SIZE OF A

PBEC USING SAMPLING

In this Section, we show theoretical

justification of the double sampling process.

As described in the Section 5, the algorithm

creates a sample database Ď⊆D. Ď is then

used for computation of the set of all

frequent sequences F’ using the relative

support min_supp*. Afterward, F’ is

sampled, producing F’s⊆F’. Unfortunately,

good bounds on the double sampling process

are not available. However, probabilistic

guarantees exists on the estimated values,

such that: (1) guarantees on the estimate of

the support of a sequence, i.e., probabilistic

estimate whether a sequence is frequent or

not; (2) relative size of a PBEC [S] with S

given independently of F’s. Combining (1)

and (2) should give a good estimate of the

relative processing time of the algorithm in a

single PBEC.

(1) Estimation of the support: The support

of a sequence can be estimated using the

Chernoff bounds and indicator variables.

The Chernoff bounds and gives us estimate

whether a sequence is a subsequence of a

transaction in a database or not. We denote

by errsupp(S, Ď) = |б(S,D) - б (S, Ď) the error

of the estimate of the support of sequence S

in the database D. Now, we can formulate

the Chernoff bounds used for estimation of

the support, originally formulated for

frequent itemset mining.

(2) Estimation of the relative size of a

PBEC: Let us have a sequence S and a

PBEC [S]. We want to compute F’s⊆F’such

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and Engineering (IJARMATE)
 Vol. 2, Issue 9, September 2016.

All Rights Reserved @ 2016 IJARMATE 6

that F’ is obtained from Ď using relative

support min_supp*. The objective is to

estimate the relative size of |[S]∩F’|/|F’|by

|[S]∩F’s|/|F’s|. We hope that |[S]∩F|/|F| is

approximated by |[S]∩F’|/|F’|, which is

approximated by |[S]∩F’s|/|F’s|. Please note

that S must be given independently of F’s.

The relative size of a PBEC can be used as

the estimate of the relative processing time

of the PBEC by a sequential algorithm. This

estimate ignores some details of the

sequential algorithm.

7 WEIGHTING PREFIX TREE

Until now, we have considered the relative

processing time of a PBEC, as the relative

size of samples in that PBEC. The relative

size of a PBEC estimates the relative

processing time of that PBEC. The reason is

that the processing time increase when the

numbers of frequent sequences in a PBEC

increase.

(1) Estimating the weight of collection of

frequent extensions: From the discussion in

Section 3 follows that to collect frequent

extensions of S, we have to process items of

transactions (k,Q) € D, S ≤ Q. We need to

estimate the computational complexity

(processing time) of the collection of

frequent extensions of the Prefixspan

algorithm that has the whole database D as

its input. The estimate is computed as the

average number of items processed per

transaction by the same sequential algorithm

with the database sample D’ as its input.

(2) Computing the weight of the

projection operation: in the prior case, we

expected the computational complexity

execution time) of the operation of the

prefixspan algorithm with the whole

database D as its input. We do so by

computing the average number of steps of

the operation in the database sample Ď. Let

us have a pseudo-projected transaction

(k,{l1,…,ln})€Ď|s and its corresponding

transaction (k,Q})€ Ď.

8 THE PARALLEL PREFIXSPAN

ALGORITHM

This section contains the main contribution

of the paper. All the ideas presented in the

previous sections are integrated here,

showing how to execute the Prefixspan in

parallel. The parallel Prefixspan algorithm

has four phases. In the Phase 1, the method

produces the weighting tree T containing the

estimates of the relative processing time of

the PBECs, see Section 8.1. In the Phase 2,

the method partitions the set F into PBECs,

using the tree T, and schedule PBECs on

processor. In the Phase 3, the method

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and Engineering (IJARMATE)
 Vol. 2, Issue 9, September 2016.

All Rights Reserved @ 2016 IJARMATE 7

distributes the database in such a way that

each processor can process independently its

assigned PBECs.

The motivation behind Algorithm 3 is that

the algorithm time increase when: 1) dataset

size increase; 2) the support decreases, or in

another words when the size of F increase.

See Section 5 for details.

9. EXPERIMENTAL EVALUATIONS

In this section, we experimentally evaluate

the proposed method. The whole algorithm

was implemented in C++ (compiled with

gcc 4.4) using MPI, resulting in _ 30’000

lines of code. The implementation was

executed on the CESNET metacentrum on

the zegox cluster. Each zegox’s node

contains two Intel E5-2620 equipped with

1_-Infiniband. Nodes were exclusively

allocated for these measurements and used a

maximum of 5 cores per node (to avoid

influences from other jobs).

Fig.4. 1) k-depth weighting tree; 2) sample weighting

tree;

One event was made from ids of the

resources fetched in a window of 10 seconds

by one IP address. From the transactions,

items were removed if presented in every

transaction. In Figure 4 are shown the

speedups of our method. All of the proposed

methods have speedups up to 20– 32 on 40

processors for lower values of support.

These three methods exhibits similar

performance on the datasets generated using

the IBM generator. The speedups are lower,

for higher values of support. For example,

the T1000I0.3P500PL5SL5TL15 dataset has

quite good speedups for supports 10’000 an

8’750 and bad speedups for supports 30’000

and 20’000.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and Engineering (IJARMATE)
 Vol. 2, Issue 9, September 2016.

All Rights Reserved @ 2016 IJARMATE 8

10. CONCLUSIONS

We have proposed an algorithm for mining

of frequent sequences using static load-

balancing. The method creates a sample of

frequent sequences and use this sample for

estimating the relative processing time of the

algorithm in the PBECs. The estimate of the

relative processing time is in fact performed

by estimating the computational complexity

of processing various PBECs. The relative

processing time is then used for partitioning

and scheduling of the PBECs. The problem

is that the estimated size of a PBEC is

dependent on the construction of the PBEC

(which should not happen). This dependency

could be probably removed by using, for

example, the bootstrap method. That is:

getting the whole e Fs and making bootstrap

samples of e Fs that are used for partitioning

and estimation of the size of PBECs.

Currently, those does not seems to be

necessary, as the speedups are quite

satisfactory.

11. FUTURE WORK

 In future we have to implement the

parallel algorithm to reduce the complexity

of computational time and implement the

result of frequent sequence mining using

static load balancing. Additionally we have

to reduce the slowness and memory

consumption of a process.

REFERENCES

[1] R. Srikant and R. Agrawal. Mining

sequential patterns: Generalizations and

performance improvements. Advances in

Database TechnologyEDBT’96, pages 1–17,

1996.

[2] R. Agrawal and R. Srikant. Fast

algorithms for mining association rules. In

Proceedings of 20th International

Conference on Very Large Data Bases,

pages 487–499. Morgan Kaufmann, 1994.

[3] R. Kessl. Static load balancing of

parallel mining of frequent itemsets using

reservoir sampling. In LNCS 6871, Machine

Learning and Data Mining in Pattern

Recognition - 7th International

Conference, pages 553–567. Springer, 2011.

[4] R. Kessl and P. Tvrd´ık. Probabilistic

load balancing method for parallel mining of

all frequent itemsets. In PDCS ’06:

Proceedings of the 18th IASTED

International Conference on Parallel and

Distributed Computing and Systems, pages

578–586, Anaheim, CA, USA, 2006. ACTA

Press.

[5] R. Kessl and P. Tvrd´ık. Toward more

parallel frequent itemset mining algorithms.

In PDCS ’07: Proceedings of the 19th

IASTED International Conference on

Parallel and Distributed Computing and

Systems, pages 97–103, Anaheim, CA,

USA, 2007. ACTA Press.

[6] R. Agrawal and R. Srikant. Mining

sequential patterns. In Data Engineering,

1995. Proceedings of the Eleventh

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and Engineering (IJARMATE)
 Vol. 2, Issue 9, September 2016.

All Rights Reserved @ 2016 IJARMATE 9

International Conference on, pages 3–14.

IEEE, 1995.

[7] M. J. Zaki. Parallel sequence mining on

shared-memory machines. Journal of

Parallel and Distributed Computing,

61(3):401– 426, 2001.

[8] D. Gunopulos, R. Khardon, and R. S.

Sharma. Discovering all most specific

sentences. ACM Transactions on Database

Systems, 28:140–174, 2003.

[9] D. Gunopulos, H. Mannila, and S.

Saluja. Discovering all most specific

sentences by randomized algorithms. In

ICDT, pages 215–229, 1997.

[10] S. Cong, J. Han, J. Hoeflinger, and D.

Padua. A samplingbased framework for

parallel data mining. In Proceedings of the

tenth ACM SIGPLAN symposium on

Principles and practice of parallel

programming, pages 255–265. ACM, 2005.

